我有一个数据框,我必须看看是否存在一个条目,其中每个市场都有last_saturday数据,这也是一个最大数据条目。
data = {
'marketplace': [3, 3, 4, 4, 5, 3, 4],
'date': ['2017-11-11', '2017-11-10', '2017-11-07', '2017-11-08', '2017-11-10', '2017-11-09', '2017-11-10']
}
last_saturday = '2017-11-11'
df = pd.DataFrame(data, columns= ['marketplace', 'date'])
df_sub = df.groupby(['marketplace'])['date'].max()
print(df_sub)
我得到df_sub =
marketplace
3 2017-11-11
4 2017-11-10
5 2017-11-10
Name: date, dtype: object
如何遍历df_sub
以查看市场的日期是否与last_saturday
匹配?
当我尝试打印日期print(df_sub['date'])
时,我收到以下错误:
TypeError: an integer is required
tz=getattr(series.dtype, 'tz', None))
File "pandas/_libs/index.pyx", line 83, in pandas._libs.index.IndexEngine.get_value
File "pandas/_libs/index.pyx", line 91, in pandas._libs.index.IndexEngine.get_value
File "pandas/_libs/index.pyx", line 141, in pandas._libs.index.IndexEngine.get_loc
KeyError: 'date'
我认为为了访问df_sub
中的数据,我必须使用iloc
或loc
,但不确定如何使用struct sockaddr_in
。
答案 0 :(得分:0)
我认为您需要将Series
与仅值进行比较 - 获取布尔值掩码并需要any
来检查至少一个True
:
print ((df_sub == last_saturday).any())
True
print (df_sub == last_saturday)
3 True
4 False
5 False
Name: date, dtype: bool
首先按参数DataFrame
或reset_index
创建as_index=False
:
df_sub = df.groupby(['marketplace'], as_index=False)['date'].max()
#df_sub = df.groupby(['marketplace'])['date'].max().reset_index()
print(df_sub)
marketplace date
0 3 2017-11-11
1 4 2017-11-10
2 5 2017-11-10
比较专栏:
print ((df_sub['date'] == last_saturday).any())
True