我有一个3x3 numpy数组,我想创建一个3x3xC矩阵,其中新维度包含原始3x3数组的精确副本。我确信这是在某个地方被问到但我无法找到最好的方法。我找到了如何为简单的一维数组x:
执行此操作new_x = np.tile(np.array(x, (C, 1))
重复数组,然后执行:
np.transpose(np.expand_dims(new_x, axis=2),(2,1,0))
扩展尺寸并切换轴,以便在第三维中重复数组(虽然这有效但我不确定这是否也是最好的方法) - 最有效的方法是什么为一般的nxn numpy数组做这个?
答案 0 :(得分:5)
对于只读版本,可以使用broadcast_to
:
In [370]: x = np.arange(9).reshape(3,3)
In [371]: x
Out[371]:
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
In [372]: x = np.broadcast_to(x[..., None],(3,3,10))
In [373]: x
Out[373]:
array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]],
[[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]],
[[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8]]])
或repeat
:
In [378]: x=np.repeat(x[...,None],10,2)
In [379]: x
Out[379]:
array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]],
[[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]],
[[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8]]])
这是一个更大的数组,其元素可以单独更改。