我想在sklearn中做更多的事情。在这里,我试图生成一个不平衡的分类集,运行逻辑回归,绘制数据点并绘制决策边界线。
为了绘制决策边界线,我首先得到系数:
coef = clf.best_estimator_.coef_
intercept = clf.best_estimator_.intercept_
然后我构建了这条线:
x1 = np.linspace(-8, 10, 100)
x2 = -(coef[0][0] * x1 + intercept[0]) / coef[0][1]
plt.plot(x1, x2, color='#414e8a', linewidth=2)
然而,该线没有绘制,因为x2全部为inf,因为coef [0] [1]等于0.这就是我遇到的问题。为什么这些系数的第二项为0?
以下完整代码:
from sklearn.datasets import make_classification
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import KFold, train_test_split
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
%pylab inline
pylab.rcParams['figure.figsize'] = (12, 6)
plt.style.use('fivethirtyeight')
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
# Generate data with two classes
X, y = make_classification(class_sep=1.2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, n_features=5, n_clusters_per_class=1, n_samples=10000, flip_y=0, random_state=10)
pca = PCA(n_components=2)
X = pca.fit_transform(X)
y = y.astype('str')
y[y=='1'] ='L'
y[y=='0'] ='S'
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, random_state=0)
X_1, X_2 = X_train[y_train=='S'], X_train[y_train=='L']
# Fit a Logistic Regression model
clf_base = LogisticRegression()
grid = {'C': 10.0 ** np.arange(-2, 3),'penalty': ['l1', 'l2']}
cv = KFold(X_train.shape[0], n_folds=5, shuffle=True, random_state=0)
clf = GridSearchCV(clf_base, grid, cv=cv, n_jobs=8, scoring='f1_macro')
clf.fit(X_train, y_train)
# Get coefficients
coef = clf.best_estimator_.coef_
intercept = clf.best_estimator_.intercept_
# Create separation line
x1 = np.linspace(-8, 10, 100)
x2 = -(coef[0][0] * x1 + intercept[0]) / coef[0][1]
plt.scatter(X_1[:,0], X_1[:,1], color='#1abc9c')
plt.scatter(X_2[:,0], X_2[:,1], color='#e67e22')
x_coords = np.concatenate([X_1[:,0],X_2[:,0]])
y_coords = np.concatenate([X_1[:,1],X_2[:,1]])
plt.axis([min(x_coords), max(x_coords), min(y_coords), max(y_coords)])
plt.title("Original Dataset - Fitted Logistic Regression")
plt.plot(x1, x2, color='#414e8a', linewidth=2)
plt.show()
print(coef)
正如您所看到的,coef中的第二项是0.
我在这里做错了什么?
谢谢!
修改
似乎网格搜索参数导致第二个系数为零。例如:
当我将网格参数设置为:
时grid = {'C': 10.0 ** np.arange(-2, 3),'penalty': ['l1', 'l2'],'class_weight': ['balanced']}
这给了我两个非零系数
当我删除班级参数时:
grid = {'C': 10.0 ** np.arange(-2, 3),'penalty': ['l1', 'l2']}
这使得我在coef中的第二个元素为零。
希望能够简化问题。那里有人有想法吗?谢谢!
答案 0 :(得分:0)
您的第一个系数为零,因为您使用强L1正则化,这会从模型中删除所有不太有用的功能。
您可以使用clf.best_params_
查看它 - 它等于{'C': 0.01, 'penalty': 'l1'}
。切换到'l2'惩罚,你将使所有系数都为非零。
如果要绘制任意形式的Ax+By+C=0
行,可以使用此函数:
import matplotlib.pyplot as plt
import numpy as np
def plot_normal_line(A, B, C, ax=None, **kwargs):
""" Plot equation of Ax+By+C=0"""
if ax is None:
ax = plt.gca()
if A == 0 and B == 0:
raise Exception('A or B should be non-zero')
if B == 0:
# plot vertical
ax.vlines(-C / A, *ax.get_ylim(), **kwargs)
else:
# plot functoon
x = np.array(ax.get_xlim())
y = (A*x+C) / -B
ax.plot(x, y, **kwargs)
然后命令plot_normal_line(*coef[0], intercept)
将绘制您的决策边界。
但是,由于您的数据集是平衡的,对于几乎所有的点,最可能的类是第二个(橙色)。因此,50%概率(粗黑线)的决策边界位于分散的左侧: