I have a DNC model built in tensor flow, after training, now I want to test it against test data I tried everything, but it seems that tensor flow is always requiring the training data to feed the tensor.
with tf.Session(graph=graph) as sess:
# initialize input output pairs
tf.initialize_all_variables().run()
final_i_data = X_train
final_o_data = y_train
# for each iteration
for i in range(0, iterations + 1):
# feed in each input output pair
feed_dict = {dnc.i_data: final_i_data, dnc.o_data: final_o_data}
# make predictions
l, _, predictions = sess.run([loss, optimizer, output], feed_dict=feed_dict)
if i % 100 == 0:
print(i, l)
for x in X_test:
x= np.reshape(x,(1,24))
feed_dict= {dnc.tf_test_dataset: x}
predictions = sess.run(test_output, feed_dict=feed_dict)
print(predictions)
我每次都有这个错误:
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape [6,24]
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[6,24], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
在我的图表中,我将tf_test_dataset作为占位符的大小(1,24),但错误要求我提供训练数据的占位符。请帮助!