我正在尝试使用CNN对狗的繁殖鉴定进行分类。我已将图像转换为灰度并重新缩放它们以便缩小尺寸。所以现在我试图将它们添加到numpy数组中并进行训练。此外,我将使用Relu激活功能,因为它适用于不同类别的狗繁殖的多层和分类交叉熵。
以下是灰度和重新缩放的代码:
def RescaleGrayscaleImg():
# iterate through the names of contents of the folder
for image_path in os.listdir(path):
# create the full input path and read the file
input_path = os.path.join(path, image_path)
# make image grayscale
img = io.imread(input_path)
img_scaled = rescale(img, 2.0 / 4.0)
GrayImg = color.rgb2gray(img_scaled)
# create full output path, 'example.jpg'
# becomes 'grayscaled_example.jpg', save the file to disk
fullpath = os.path.join(outPath, 'grayscaled_'+image_path)
misc.imsave(fullpath, GrayImg)
如何将图像转换为数组?每列都是一张图片?任何帮助都会有所帮助。
答案 0 :(得分:10)
对于CNN,您的输入必须是4-D张量[batch_size, width, height, channels]
,因此每个图像都是3-D子张量。由于您的图片是灰度的,channels=1
。同样,对于培训,所有图片的大小必须相同 - WIDTH
和HEIGHT
。
skimage.io.imread
正在返回ndarray
,这对keras非常有效。所以你可以读取这样的数据:
all_images = []
for image_path in os.listdir(path):
img = io.imread(image_path , as_grey=True)
img = img.reshape([WIDTH, HEIGHT, 1])
all_images.append(img)
x_train = np.array(all_images)
不确定如何存储标签,但您也需要制作一系列标签。我称之为y_train
。您可以将其转换为热门,如下所示:
y_train = keras.utils.to_categorical(y_train, num_classes)
keras的模型很简单,这里最简单(使用relu和x-entropy):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
input_shape=[WIDTH, HEIGHT, 1]))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=100, epochs=10, verbose=1)
可以找到一个完整的MNIST示例here。