按r中的连续值分组

时间:2017-11-07 23:38:08

标签: r dplyr

我有一个来自支持票务系统的数据集,它记录了代理商在分类和响应客户请求时所做的每次点击。系统会为每次点击分配一个新的hist_id,但代理会点击几个字段,触发表格中的多行,他们认为是单个“交互”。

我的目标是通过对每个组中的第一个和最后一个modify_time值执行diff来计算每个交互的句柄时间。

我目前陷入困境,因为代理人将全天与案件进行多次互动。

以下是一个示例数据框:

hist_id <- c(1234, 2345, 3456, 4567, 5678, 6789, 7890)
case_id <- c(1, 1, 1, 1, 1, 1, 1)
agent_name <- c("John", "John", "John", "Paul", "Paul", "John", "John")
modify_time <- as.POSIXct(c(1510095120, 1510095180, 1510095240, 1510098600, 1510098720, 1510135200, 1510135320), origin = "1970-01-01")
df <- data.frame(hist_id, case_id, agent_name, modify_time)

在case_id和agent_name上使用group by按预期分组符合条件的所有行:

df %>% group_by(case_id, agent_name) %>% mutate(first = first(modify_time), last = last(modify_time), diff = min(difftime(last, first)))

这给了我这个:

    # A tibble: 7 x 7
# Groups:   case_id, agent_name [2]
  hist_id case_id agent_name         modify_time               first                last       diff
    <dbl>   <dbl>     <fctr>              <dttm>              <dttm>              <dttm>     <time>
1    1234       1       John 2017-11-07 16:52:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
2    2345       1       John 2017-11-07 16:53:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
3    3456       1       John 2017-11-07 16:54:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
4    4567       1       Paul 2017-11-07 17:50:00 2017-11-07 17:50:00 2017-11-07 17:52:00   120 secs
5    5678       1       Paul 2017-11-07 17:52:00 2017-11-07 17:50:00 2017-11-07 17:52:00   120 secs
6    6789       1       John 2017-11-08 04:00:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs
7    7890       1       John 2017-11-08 04:02:00 2017-11-07 16:52:00 2017-11-08 04:02:00 40200 secs

返回John的第一个和最后一个modify_times。但是,我需要对case_id和agent_name的连续匹配进行分组,以便考虑Paul的交互。所以这里记录了三个互动:一个来自John,一个来自Paul,另一个来自John。

所需的输出将是这样的:

    # A tibble: 7 x 7
# Groups:   case_id, agent_name [2]
  hist_id case_id agent_name         modify_time               first                last       diff
    <dbl>   <dbl>     <fctr>              <dttm>              <dttm>              <dttm>     <time>
1    1234       1       John 2017-11-07 16:52:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
2    2345       1       John 2017-11-07 16:53:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
3    3456       1       John 2017-11-07 16:54:00 2017-11-07 16:52:00 2017-11-07 16:54:00 120 secs
4    4567       1       Paul 2017-11-07 17:50:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
5    5678       1       Paul 2017-11-07 17:52:00 2017-11-07 17:50:00 2017-11-07 17:52:00 120 secs
6    6789       1       John 2017-11-08 04:00:00 2017-11-08 04:00:00 2017-11-08 04:02:00 120 secs
7    7890       1       John 2017-11-08 04:02:00 2017-11-08 04:00:00 2017-11-08 04:02:00 120 secs

1 个答案:

答案 0 :(得分:4)

以下是一种整数方法,可以按processing cluster identity以及case_idagent_name对组进行分区:

按顺序排列所有点击,每次hist_id序列遇到向新agent_name的转换时,都会生成一个新的ID标记。 cumsum每个集群处理块为每个代理生成一个唯一prcl_id的标记。df %>% arrange(hist_id) %>% # to ensure there are no wrinkles mutate(ag_chg_flg = ifelse(lag(agent_name) != agent_name, 1, 0) %>% coalesce(0) # to reassign the first click in a case_id to 0 (from NA) ) %>% group_by(case_id, agent_name) %>% mutate(prcl_id = cumsum(ag_chg_flg) + 1) %>% # generate the proc_clst_id (starting at 1) group_by(case_id, agent_name, prcl_id) %>% # group by the complete composite id mutate(first = first(modify_time), last = last(modify_time), diff = min(difftime(last, first)) ) 使用所有三个id,您可以在所需的分区中运行您选择的突变。

# A tibble: 7 x 9
# Groups:   case_id, agent_name, prcl_id [3]
  hist_id case_id agent_name         modify_time ag_chg_flg prcl_id               first                last   diff
    <dbl>   <dbl>     <fctr>              <dttm>      <dbl>   <dbl>              <dttm>              <dttm> <time>
1    1234       1       John 2017-11-07 14:52:00          0       1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
2    2345       1       John 2017-11-07 14:53:00          0       1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
3    3456       1       John 2017-11-07 14:54:00          0       1 2017-11-07 14:52:00 2017-11-07 14:54:00 2 mins
4    4567       1       Paul 2017-11-07 15:50:00          1       2 2017-11-07 15:50:00 2017-11-07 15:52:00 2 mins
5    5678       1       Paul 2017-11-07 15:52:00          0       2 2017-11-07 15:50:00 2017-11-07 15:52:00 2 mins
6    6789       1       John 2017-11-08 02:00:00          1       2 2017-11-08 02:00:00 2017-11-08 02:02:00 2 mins
7    7890       1       John 2017-11-08 02:02:00          0       2 2017-11-08 02:00:00 2017-11-08 02:02:00 2 mins

哪个可以帮到你:

Base::Base()