Python将队列对象传递给多处理。进程池

时间:2017-11-07 16:00:29

标签: python python-multiprocessing

问题

我的应用程序中有一个共享的multiprocessing.Pool对象,它使用两个队列对象进行初始化(一个用于作业,另一个用于结果)。

如何将任意队列对象发送到作业队列并让进程将结果发送到此备用队列?

job_q.put_nowait((item, alt_q)) # Raises an exception.

这种方法在进行多线程处理时工作正常,但在进行多处理时则不行。

实施例

下面的示例代码演示了我想要实现的目标。我使用两个multiprocessing.Queue对象job_qres_q初始化池。实际上,它们是由multiprocessing.Manager创建的代理。 run函数是每个进程的运行循环,它监视作业队列中的项目,并简单地将项目添加到结果队列中。 (一个单独的线程正在监视结果队列并打印到stdout)。

import multiprocessing as mp
import queue
import threading
import time
import os

def run(job_queue, result_queue):
    """ Run-loop for each process.
    """
    print("Starting process {}".format(os.getpid()))
    while True:
        job_q = job_queue
        res_q = result_queue
        try:
            # `item` is just a string
            # `opt_queue` is an optional result queue to use
            item, opt_queue = job_q.get(True, 0.05)
            if opt_queue is not None:
                res_q = opt_queue
            item = item + " Processed"
            res_q.put_nowait(item)
        except queue.Empty:
            continue


def monitor_queue(mp_queue):
    """ The target of a monitoring thread.
    """
    while True:
        try:
            item = mp_queue.get(True, 0.05)
            print("Got `{}`".format(item))
        except queue.Empty:
            continue

if __name__ == '__main__':
    m = mp.Manager()
    job_q = m.Queue()
    res_q = m.Queue()
    alt_q = m.Queue()
    # Monitor `res_q` for items
    threading.Thread(target=monitor_queue, args=(res_q,)).start()
    # Monitor `alt_q` for items
    threading.Thread(target=monitor_queue, args=(alt_q,)).start()
    # `run` is called by each process, share `job_q` and `res_q` with all processes
    pool = mp.Pool(2, run, (job_q, res_q))
    time.sleep(1)
    # Add an item to `job_q` and `None` means send result to `res_q`
    print('Putting first item into the job queue')
    job_q.put_nowait(('#1', None))  # prints... Got `#1`
    time.sleep(1)
    # Add an item to `job_q` and send result to `alt_q`
    print('Putting second item into the job queue and passing alternative result queue')
    job_q.put_nowait(('#2', alt_q))  # TypeError: AutoProxy() got an unexpected keyword argument 'manager_owned'
    pool.close()
    pool.terminate()

出现错误

Putting second item into the job queue and passing alternative result queue
Traceback (most recent call last):
  File "/Users/daniel/Desktop/pydebug/mp_example.py", line 54, in <module>
    job_q.put_nowait(('#1', alt_q))  # TypeError: AutoProxy() got an unexpected keyword argument 'manager_owned'
  File "<string>", line 2, in put_nowait
  File "/usr/local/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/managers.py", line 772, in _callmethod
    raise convert_to_error(kind, result)
multiprocessing.managers.RemoteError: 
---------------------------------------------------------------------------
Traceback (most recent call last):
  File "/usr/local/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/managers.py", line 228, in serve_client
    request = recv()
  File "/usr/local/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/connection.py", line 251, in recv
    return _ForkingPickler.loads(buf.getbuffer())
  File "/usr/local/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/managers.py", line 881, in RebuildProxy
    return func(token, serializer, incref=incref, **kwds)
TypeError: AutoProxy() got an unexpected keyword argument 'manager_owned'
---------------------------------------------------------------------------

1 个答案:

答案 0 :(得分:0)

我认为你无法在消息中传递Queue,因为它不可序列化。