很抱歉我缺乏知识,但我试图在Tensorflow上运行示例:
import numpy as np
import tensorflow as tf
feature_columns = [tf.feature_column.numeric_column("x", shape=[1])]
estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.estimator.inputs.numpy_input_fn(
{"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
{"x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
{"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)
estimator.train(input_fn=input_fn, steps=1000)
train_metrics = estimator.evaluate(input_fn=train_input_fn)
eval_metrics = estimator.evaluate(input_fn=eval_input_fn)
print("train metrics: %r"% train_metrics)
print("eval metrics: %r"% eval_metrics)
我收到以下错误消息: PermissionDeniedError:无法删除文件:C:\ Users \ Jeff \ AppData \ Local \ Temp \ tmpgpmjek44 \ graph.pbtxt.tmpe31b9f4677cb426fbaef32dadeaf1a4d;许可被拒绝
我发现错误来自" estimator.train(input_fn = input_fn,steps = 1000)"。我试着查看文件夹和文件。他们已获得完全控制权。这可能是一个愚蠢的问题,但这可能是什么原因和解决方案。非常感谢你!
更新:
我从根运行它并获得以下内容:
(C:\ Users \ Jeff \ Anaconda3)C:\ Users \ Jeff> python test.py 警告:tensorflow:使用临时文件夹作为模型目录: C:\ Users \ Jeff \ AppData \ Local \ Temp \ tmp0yywjv30 2017-11-10 22:54:59.808636:我 C:\ tf_jenkins \家庭\工作区\ REL-WIN \中号\ WINDOWS-GPU \ PY \ 36 \ tensorflow \核心\平台\ cpu_feature_guard.cc:137] 您的CPU支持此TensorFlow二进制文件不支持的指令 编译使用:AVX AVX2 2017-11-10 22:55:00.096842:我 C:\ tf_jenkins \家庭\工作区\ REL-WIN \中号\ WINDOWS-GPU \ PY \ 36 \ tensorflow \核心\ common_runtime \ GPU \ gpu_device.cc:1030] 找到具有属性的设备0:名称:GeForce GTX 1060 major:6 minor: 1 memoryClockRate(GHz):1.6705 pciBusID:0000:01:00.0 totalMemory: 6.00GiB freeMemory:4.99GiB 2017-11-10 22:55:00.096927:IC:\ tf_jenkins \ home \ workspace \ rel-win \ M \ windows-gpu \ PY \ 36 \ tensorflow \ core \ common_runtime \ gpu \ gpu_device。 CC:1120] 创建TensorFlow设备(/ device:GPU:0) - > (设备:0,名称: GeForce GTX 1060,pci总线ID:0000:01:00.0,计算能力:6.1) 2017-11-10 22:55:02.512317:E C:\ tf_jenkins \家庭\工作区\ REL-WIN \中号\ WINDOWS-GPU \ PY \ 36 \ tensorflow \ stream_executor \ CUDA \ cuda_blas.cc:366] 无法创建cublas句柄:CUBLAS_STATUS_ALLOC_FAILED 2017-11-10 22:55:02.513461:E C:\ tf_jenkins \家庭\工作区\ REL-WIN \中号\ WINDOWS-GPU \ PY \ 36 \ tensorflow \ stream_executor \ CUDA \ cuda_blas.cc:366] 无法创建cublas句柄:CUBLAS_STATUS_ALLOC_FAILED 2017-11-10 22:55:02.513601:E C:\ tf_jenkins \家庭\工作区\ REL-WIN \中号\ WINDOWS-GPU \ PY \ 36 \ tensorflow \ stream_executor \ CUDA \ cuda_blas.cc:366] 无法创建cublas句柄:CUBLAS_STATUS_ALLOC_FAILED 2017-11-10 22:55:02.514975:E C:\ tf_jenkins \家庭\工作区\ REL-WIN \中号\ WINDOWS-GPU \ PY \ 36 \ tensorflow \ stream_executor \ CUDA \ cuda_blas.cc:366] 无法创建cublas句柄:CUBLAS_STATUS_ALLOC_FAILED 2017-11-10 22:55:02.515067:W C:\ tf_jenkins \家庭\工作区\ REL-WIN \中号\ WINDOWS-GPU \ PY \ 36 \ tensorflow \ stream_executor \ stream.cc 1901] 试图在没有BLAS的情况下使用StreamExecutor执行BLAS操作 支持Traceback(最近一次调用最后一次):文件 " C:\用户\杰夫\ Anaconda3 \ lib中\站点包\ tensorflow \蟒\客户\ session.py&#34 ;, 第1323行,在_do_call中 return fn(* args)File" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ client \ session.py", 第1302行,在_run_fn中 status,run_metadata)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ framework \ errors_impl.py", 第473行,退出 c_api.TF_GetCode(self.status.status))tensorflow.python.framework.errors_impl.InternalError:Blas GEMV 发射失败:m = 1,n = 4 [[Node:linear / linear_model / x / weighted_sum = MatMul [T = DT_FLOAT,transpose_a = false,transpose_b = false, _device =" /作业:本地主机/复制:0 /任务:0 /设备:GPU:0"](线性/ linear_model / X /整形, 线性/ linear_model / X /权重)]] [[节点:线性/梯度/线性/ linear_model / x / weighted_sum_grad / tuple / control_dependency_1 / _85 = _Revvclient_terminated = false,recv_device =" / job:localhost / replica:0 / task:0 / device:CPU:0", send_device =" /作业:本地主机/复制:0 /任务:0 /设备:GPU:0&#34 ;, send_device_incarnation = 1, tensor_name =" edge_184_linear /梯度/线性/ linear_model / X / weighted_sum_grad /元组/ control_dependency_1&#34 ;, tensor_type = DT_FLOAT, _device =" /作业:本地主机/复制:0 /任务:0 /装置:CPU:0"]]
在处理上述异常期间,发生了另一个异常:
回溯(最近一次呼叫最后一次):文件" test.py",第39行,in estimator.train(input_fn = input_fn,steps = 1000)File" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py", 302号线,在火车上 loss = self._train_model(input_fn,hooks,saving_listeners)File" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py", 第783行,在_train_model中 _,loss = mon_sess.run([estimator_spec.train_op,estimator_spec.loss])文件 " C:\用户\杰夫\ Anaconda3 \ lib中\站点包\ tensorflow \蟒\训练\ monitored_session.py&#34 ;, 第521行,在运行中 run_metadata = run_metadata)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ training \ monitored_session.py", 第892行,在运行中 run_metadata = run_metadata)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ training \ monitored_session.py", 第967行,在运行中 提升six.reraise(* original_exc_info)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ six.py",第693行,in 再加注 提升值文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ training \ monitored_session.py", 第952行,在运行中 return self._sess.run(* args,** kwargs)File" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ training \ monitored_session.py", 第1024行,在运行中 run_metadata = run_metadata)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ training \ monitored_session.py", 第827行,在运行中 return self._sess.run(* args,** kwargs)File" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ client \ session.py", 889行,在运行中 run_metadata_ptr)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ client \ session.py", 1120行,在_run feed_dict_tensor,options,run_metadata)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ client \ session.py", 第1317行,在_do_run中 options,run_metadata)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ client \ session.py", 第1336行,在_do_call中 raise type(e)(node_def,op,message)tensorflow.python.framework.errors_impl.InternalError:Blas GEMV 发射失败:m = 1,n = 4 [[Node:linear / linear_model / x / weighted_sum = MatMul [T = DT_FLOAT,transpose_a = false,transpose_b = false, _device =" /作业:本地主机/复制:0 /任务:0 /设备:GPU:0"](线性/ linear_model / X /整形, 线性/ linear_model / X /权重)]] [[节点:线性/梯度/线性/ linear_model / x / weighted_sum_grad / tuple / control_dependency_1 / _85 = _Revvclient_terminated = false,recv_device =" / job:localhost / replica:0 / task:0 / device:CPU:0", send_device =" /作业:本地主机/复制:0 /任务:0 /设备:GPU:0&#34 ;, send_device_incarnation = 1, tensor_name =" edge_184_linear /梯度/线性/ linear_model / X / weighted_sum_grad /元组/ control_dependency_1&#34 ;, tensor_type = DT_FLOAT, _device =" /作业:本地主机/复制:0 /任务:0 /装置:CPU:0"]]
由op' linear / linear_model / x / weighted_sum'引起,定义于:File " test.py",第39行,in estimator.train(input_fn = input_fn,steps = 1000)File" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py", 302号线,在火车上 loss = self._train_model(input_fn,hooks,saving_listeners)File" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py", 第711行,在_train_model中 功能,标签,model_fn_lib.ModeKeys.TRAIN,self.config)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py", 第694行,在_call_model_fn中 model_fn_results = self._model_fn(features = features,** kwargs)文件 " C:\用户\杰夫\ Anaconda3 \ lib中\站点包\ tensorflow \蟒\估计\罐头\ linear.py&#34 ;, 第348行,在_model_fn中 config = config)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ estimator \ canned \ linear.py", 第118行,在_linear_model_fn中 logits = logit_fn(features = features)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ estimator \ canned \ linear.py", 第70行,在linear_logit_fn中 features = features,feature_columns = feature_columns,units = units)文件 " C:\用户\杰夫\ Anaconda3 \ lib中\站点包\ tensorflow \蟒\ feature_column \ feature_column.py&#34 ;, 第321行,在linear_model中 列,构建器,单位,weight_collections,trainable))文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ feature_column \ feature_column.py", 第1376行,在_create_dense_column_weighted_sum中 return math_ops.matmul(tensor,weight,name =' weighted_sum')文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ ops \ math_ops.py&# 34 ;, 1891年,在matmul a,b,transpose_a = transpose_a,transpose_b = transpose_b,name = name)文件 " C:\用户\杰夫\ Anaconda3 \ lib中\站点包\ tensorflow \蟒\ OPS \ gen_math_ops.py&#34 ;, 第2436行,在_mat_mul中 name = name)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ framework \ op_def_library.py", 第787行,在_apply_op_helper中 op_def = op_def)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ framework \ ops.py", 第2956行,在create_op中 op_def = op_def)文件" C:\ Users \ Jeff \ Anaconda3 \ lib \ site-packages \ tensorflow \ python \ framework \ ops.py", 第1470行,在 init 中 self._traceback = self._graph._extract_stack()#pylint:disable = protected-access
InternalError(参见上面的回溯):Blas GEMV启动失败: m = 1,n = 4 [[Node:linear / linear_model / x / weighted_sum = MatMul [T = DT_FLOAT,transpose_a = false,transpose_b = false, _device =" /作业:本地主机/复制:0 /任务:0 /设备:GPU:0"](线性/ linear_model / X /整形, 线性/ linear_model / X /权重)]] [[节点:线性/梯度/线性/ linear_model / x / weighted_sum_grad / tuple / control_dependency_1 / _85 = _Revvclient_terminated = false,recv_device =" / job:localhost / replica:0 / task:0 / device:CPU:0", send_device =" /作业:本地主机/复制:0 /任务:0 /设备:GPU:0&#34 ;, send_device_incarnation = 1, tensor_name =" edge_184_linear /梯度/线性/ linear_model / X / weighted_sum_grad /元组/ control_dependency_1&#34 ;, tensor_type = DT_FLOAT, _device =" /作业:本地主机/复制:0 /任务:0 /装置:CPU:0"]]
答案 0 :(得分:-1)
其PermissionDeniedError: 您应该从根目录运行此脚本,我现在可以看到。 试试并更新。