我在Python中使用OpenCV只能识别图像上显示的Leaf。我已经能够对我的图像进行分割,现在我正处于"在检测到所有这些图像后如何裁剪最大的组件。以下是代码,请看一下。
使用scipy.ndimage,找到组件后我无法前进:
def undesired_objects ( image ):
components, n = ndimage.label( image )
components = skimage.morphology.remove_small_objects( components, min_size = 50 )
components, n = ndimage.label( components )
plot.imshow( components )
plot.show()
使用OpenCV connectedComponentsWithStats:
def undesired_objects ( image ):
image = image.astype( 'uint8' )
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
sizes = stats[1:, -1]; nb_components = nb_components - 1
min_size = 150
img2 = np.zeros(( output.shape ))
for i in range(0, nb_components):
if sizes[i] >= min_size:
img2[output == i + 1] = 255
plot.imshow( img2 )
plot.show()
然而,在这两种方法中,我仍然得到多个组件。下面,您将找到二进制图像:
答案 0 :(得分:2)
我会用这样的代码替换你的代码:
def undesired_objects (image):
image = image.astype('uint8')
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, nb_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
img2 = np.zeros(output.shape)
img2[output == max_label] = 255
cv2.imshow("Biggest component", img2)
cv2.waitKey()
组件上的循环现在找到具有最大区域的组件,并在循环结束时显示它。
告诉我这是否适合你,因为我自己没有测试过。
答案 1 :(得分:1)
使用cv2.CC_STAT_AREA
来提高可读性:
# Connected components with stats.
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
# Find the largest non background component.
# Note: range() starts from 1 since 0 is the background label.
max_label, max_size = max([(i, stats[i, cv2.CC_STAT_AREA]) for i in range(1, nb_components)], key=lambda x: x[1])