我正在使用tensorflow TFGAN Module
实现新的TFGAN模块有没有人能够让它真正起作用?我遇到了将tf.random.noise传递给一个简单的生成器的问题:
tfgan = tf.contrib.gan
noise = tf.random_normal([BATCH_SIZE, 28,28])
def my_generator(z, out_dim=28*28, n_units=128, reuse=False, alpha=0.01):
with tf.variable_scope('generator', reuse=reuse):
# Hidden layer
h1 = tf.layers.dense(z, n_units, activation=None)
# Leaky ReLU
h1 = tf.maximum(h1, alpha*h1)
# Logits and tanh output
logits = tf.layers.dense(h1, out_dim, activation=None)
out = tf.nn.tanh(logits)
return out, logits
然后是tfgan电话:
# Build the generator and discriminator.
gan_model = tfgan.gan_model(
generator_fn=my_generator,
discriminator_fn=my_discriminator,
real_data=images,
generator_inputs=noise)
Error: "tuple' object has no attribute 'dtype'"
,指向我的generator_inputs行。
(作为旁注,我在keras级抽象中完成了几乎所有的NN工作,所以我知道这是一个简单的问题)
编辑来自kvorobiev的评论(非常感谢)
不包括数据生成器的代码(与github上的帖子基本相同)
tfgan = tf.contrib.gan
noise = tf.random_normal([28,28])
def unconditional_generator(z, out_dim=28*28, n_units=128, reuse=False, alpha=0.01):
with tf.variable_scope('generator', reuse=reuse):
# Hidden layer
h1 = tf.layers.dense(z, n_units, activation=None)
# Leaky ReLU
h1 = tf.maximum(h1, alpha*h1)
# Logits and tanh output
logits = tf.layers.dense(h1, out_dim, activation=None)
out = tf.nn.tanh(logits)
return out, logits
def unconditional_discriminator(x, n_units=128, reuse=False, alpha=0.01):
with tf.variable_scope('discriminator', reuse=reuse):
# Hidden layer
h1 = tf.layers.dense(x, n_units, activation=None)
# Leaky ReLU
h1 = tf.maximum(h1, alpha*h1)
logits = tf.layers.dense(h1, 1, activation=None)
out = tf.nn.sigmoid(logits)
return out, logits
# Build the generator and discriminator.
gan_model = tfgan.gan_model(
generator_fn= unconditional_generator, # you define
discriminator_fn = unconditional_discriminator, # you define
real_data=img_generator,
generator_inputs=noise)
# Build the GAN loss.
gan_loss = tfgan.gan_loss(
gan_model,
generator_loss_fn=tfgan_losses.wasserstein_generator_loss,
discriminator_loss_fn=tfgan_losses.wasserstein_discriminator_loss)
# Create the train ops, which calculate gradients and apply updates to weights.
train_ops = tfgan.gan_train_ops(
gan_model,
gan_loss,
generator_optimizer=tf.train.AdamOptimizer(gen_lr, 0.5),
discriminator_optimizer=tf.train.AdamOptimizer(dis_lr, 0.5))
# Run the train ops in the alternating training scheme.
tfgan.gan_train(
train_ops,
hooks=[tf.train.StopAtStepHook(num_steps=100)],
logdir=FLAGS.train_log_dir)
回溯:
-------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-3-2c570c5257d0> in <module>()
37 discriminator_fn = unconditional_discriminator, # you define
38 real_data=img_generator,
---> 39 generator_inputs=noise)
40
41 # Build the GAN loss.
~/tf_1.4/lib/python3.5/site-packages/tensorflow/contrib/gan/python/train.py in gan_model(generator_fn, discriminator_fn, real_data, generator_inputs, generator_scope, discriminator_scope, check_shapes)
105 with variable_scope.variable_scope(discriminator_scope) as dis_scope:
106 discriminator_gen_outputs = discriminator_fn(generated_data,
--> 107 generator_inputs)
108 with variable_scope.variable_scope(dis_scope, reuse=True):
109 real_data = ops.convert_to_tensor(real_data)
<ipython-input-3-2c570c5257d0> in unconditional_discriminator(x, n_units, reuse, alpha)
19 with tf.variable_scope('discriminator', reuse=reuse):
20 # Hidden layer
---> 21 h1 = tf.layers.dense(x, n_units, activation=None)
22
23 # Leaky ReLU
~/tf_1.4/lib/python3.5/site-packages/tensorflow/python/layers/core.py in dense(inputs, units, activation, use_bias, kernel_initializer, bias_initializer, kernel_regularizer, bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint, trainable, name, reuse)
245 trainable=trainable,
246 name=name,
--> 247 dtype=inputs.dtype.base_dtype,
248 _scope=name,
249 _reuse=reuse)
AttributeError: 'tuple' object has no attribute 'dtype'
答案 0 :(得分:3)
2分:
1)我相信你的错误来自你的鉴别者的第二个论点。如果你使用库调用,TFGAN期望第二个参数是你想要的任何条件(可能是无条件情况的输入噪声,条件情况下的类,InfoGAN中的结构化噪声等)。您的定义使用noise
作为n_units
,这可能会导致类型不匹配。要解决此问题,只需使用第二个鉴别器参数而不是n_dims
。
2)我正处于公开采购许多有用/说明性例子的审核过程中(MNIST上的无条件/有条件/ InfoGAN,CIFAR的分布式培训,图像压缩的对抗性损失,图像到图像的翻译等) )。他们很快就会出现在这里:https://github.com/tensorflow/models/tree/master/research。