在我的数据框中,有几个国家/地区的名称中包含数字和/或括号。 我想从这些国家/地区名称中删除括号和数字。
例如: '玻利维亚(多民族国)'应该是'玻利维亚', '瑞士17'应该是'瑞士'。
这是我的代码,但似乎无效:
import numpy as np
import pandas as pd
def func():
energy=pd.ExcelFile('Energy Indicators.xls').parse('Energy')
energy=energy.iloc[16:243][['Environmental Indicators: Energy','Unnamed: 3','Unnamed: 4','Unnamed: 5']].copy()
energy.columns=['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable']
o="..."
n=np.NaN
energy = energy.replace('...', np.nan)
energy['Energy Supply']=energy['Energy Supply']*1000000
old=["Republic of Korea","United States of America","United Kingdom of "
+"Great Britain and Northern Ireland","China, Hong "
+"Kong Special Administrative Region"]
new=["South Korea","United States","United Kingdom","Hong Kong"]
for i in range(0,4):
energy = energy.replace(old[i], new[i])
#I'm trying to remove it here =====>
p="("
for j in range(16,243):
if p in energy.iloc[j]['Country']:
country=""
for c in energy.iloc[j]['Country'] :
while(c!=p & !c.isnumeric()):
country=c+country
energy = energy.replace(energy.iloc[j]['Country'], country)
return energy
以下是我正在处理的.xls文件:https://drive.google.com/file/d/0B80lepon1RrYeDRNQVFWYVVENHM/view?usp=sharing
答案 0 :(得分:1)
使用str.extract
:
energy['country'] = energy['country'].str.extract('(^[a-zA-Z]+)', expand=False)
df
country
0 Bolivia (Plurinational State of)
1 Switzerland17
df['country'] = df['country'].str.extract('(^[a-zA-Z]+)', expand=False)
df
country
0 Bolivia
1 Switzerland
要处理名称中有空格的国家(非常常见),对正则表达式的一点改进就足够了。
df
country
0 Bolivia (Plurinational State of)
1 Switzerland17
2 West Indies (foo bar)
df['country'] = df['country'].str.extract('(^[a-zA-Z\s]+)', expand=False).str.strip()
df
country
0 Bolivia
1 Switzerland
2 West Indies