我真的是OpenCL的新手。我已经从这个网站上获取了示例代码:http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614?pgno=2并且我已经对它进行了一些定制。我的目标是向内核发送一个填充了1个数字的4x4矩阵,然后从内核中恢复。我知道它是一个简单的代码,但我需要这样做才能理解OpenCL的工作原理。输入矩阵就是这个:
[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
但是,我从内核得到的输出是这个,应该与输入相同:
[[ 1. 1. 1. 1.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
这是我的完整代码:
import pyopencl as cl
from pyopencl import array
import numpy as np
## Step #1. Obtain an OpenCL platform.
platform = cl.get_platforms()[0]
## It would be necessary to add some code to check the check the support for
## the necessary platform extensions with platform.extensions
## Step #2. Obtain a device id for at least one device (accelerator).
device = platform.get_devices()[1]
## It would be necessary to add some code to check the check the support for
## the necessary device extensions with device.extensions
## Step #3. Create a context for the selected device.
context = cl.Context([device])
## Step #4. Create the accelerator program from source code.
## Step #5. Build the program.
## Step #6. Create one or more kernels from the program functions.
program = cl.Program(context, """
__kernel void matrix_dot_vector(const unsigned int size, __global const float *matrix, __global float *result)
{
int x = get_global_id(0);
int y = get_global_id(1);
result[x + size * y] = matrix[x + size * y];
}
""").build()
matrix = np.ones((4,4), np.float32)
## Step #7. Create a command queue for the target device.
queue = cl.CommandQueue(context)
## Step #8. Allocate device memory and move input data from the host to the device memory.
mem_flags = cl.mem_flags
#matrix_buf = cl.Buffer(context, mem_flags.READ_ONLY | mem_flags.COPY_HOST_PTR, hostbuf=matrix)
matrix_buf = cl.Buffer(context, mem_flags.READ_ONLY | mem_flags.COPY_HOST_PTR, hostbuf=matrix)
destination_buf = cl.Buffer(context, mem_flags.WRITE_ONLY, matrix.nbytes)
## Step #9. Associate the arguments to the kernel with kernel object.
## Step #10. Deploy the kernel for device execution.
program.matrix_dot_vector(queue, matrix.shape, None, np.int32(matrix.size), matrix_buf, destination_buf)
## Step #11. Move the kernels output data to host memory.
matrix_dot_vector = np.ones((4,4), np.float32)
cl.enqueue_copy(queue, matrix_dot_vector, destination_buf)
## Step #12. Release context, program, kernels and memory.
## PyOpenCL performs this step for you, and therefore,
## you don't need to worry about cleanup code
print(matrix_dot_vector)
据我所知,int y = get_global_id(1);
的值始终为0.这就是导致错误的原因,我不明白为什么它始终为0,因为我' m将正确的形状传递给内核program.matrix_dot_vector(queue, matrix.shape, None, np.int32(matrix.size), matrix_buf, destination_buf)
,这是第二个参数matrix.shape
并且等于(4,4)。
有人猜到了什么错了吗?
谢谢!
答案 0 :(得分:1)
第一个内核参数传递了错误的值 - 大小不应该是总矩阵大小。将np.int32(matrix.size)
更改为np.int32(matrix.shape[0])
。