我想使用df1
数据框重新编码df2
数据框中的值,以便最终得到像df3
这样的数据框。
目前的代码几乎可以解决问题,但有两个问题。首先,它会在没有匹配时引入NA
,例如df2
df1
变量值aed_bloodpr
与"1,2"
不匹配,因此值变为NA
。其次,当df1
中的变量无法映射到df2
时,代码将无法运行(错误消息)。
已查看nomatch
的{{1}}参数和match()
的.default参数,但我无法弄清楚如何使用它们以便我最终得到Map()
1}}。
起点:
df3
结束点:
Df1 <- data.frame("aed_bloodpr" = c("1,2","2","1","1"),
"aed_gluco" = c("2","1","3","2"),
"add_bmi" = c("2","5,7","7","5"),
"add_asthma" = c("2","2","7","5"),
"nausea" = c("3","3","4","5"))
Df2 <- data.frame("NameOfVariable" = c("aed_bloodpr","aed_bloodpr","aed_gluco","aed_gluco","aed_gluco","add_bmi","add_bmi","add_bmi"),
"VariableLevel" = c(1,2,1,2,3,2,5,7),
"VariableDef" = c("high","normal","elevated","normal","NA","above","normal","below"))
当前代码:
Df3 <- data.frame("aed_bloodpr" = c("1,2","normal","high","high"),
"aed_gluco" = c("normal","elevated","NA","normal"),
"add_bmi" = c("above","5,7","below","normal"),
"add_asthma"=c("2","2","7","5"),
"nausea" = c("3","3","4","5"))
答案 0 :(得分:1)
您需要清理才能重新标记。通过连接更容易实现实际的重新标记。这里使用tidyverse(你喜欢翻译):
library(tidyverse)
Df1 <- data.frame("aed_bloodpr" = c("1,2","2","1","1"),
"aed_gluco" = c("2","1","3","2"),
"add_bmi" = c("2","5,7","7","5"),
"add_asthma" = c("2","2","7","5"),
"nausea" = c("3","3","4","5"))
Df2 <- data.frame("NameOfVariable" = c("aed_bloodpr","aed_bloodpr","aed_gluco","aed_gluco","aed_gluco","add_bmi","add_bmi","add_bmi"),
"VariableLevel" = c(1,2,1,2,3,2,5,7),
"VariableDef" = c("high","normal","elevated","normal","NA","above","normal","below"))
Df1_long <- Df1 %>%
mutate_all(as.character) %>% # change factors to strings
rowid_to_column('i') %>% # add row index to enable later long-to-wide reshape
gather(variable, value, -i) %>% # reshape to long form
separate_rows(value, convert = TRUE) # unnest nested values and convert to numeric
str(Df1_long)
#> 'data.frame': 22 obs. of 3 variables:
#> $ i : int 1 1 2 3 4 1 2 3 4 1 ...
#> $ variable: chr "aed_bloodpr" "aed_bloodpr" "aed_bloodpr" "aed_bloodpr" ...
#> $ value : int 1 2 2 1 1 2 1 3 2 2 ...
Df2_clean <- Df2 %>%
mutate_if(is.factor, as.character) %>% # change factors to strings
mutate_all(na_if, 'NA') # change "NA" to NA
Df3 <- Df1_long %>%
left_join(Df2_clean, by = c('variable' = 'NameOfVariable', # merge
'value' = 'VariableLevel')) %>%
mutate(VariableDef = coalesce(VariableDef, as.character(value))) %>% # combine labels and values
group_by(i, variable) %>%
summarise(value = toString(VariableDef)) %>% # re-aggregate multiple values
spread(variable, value) # reshape to wide form
Df3
#> # A tibble: 4 x 6
#> # Groups: i [4]
#> i add_asthma add_bmi aed_bloodpr aed_gluco nausea
#> * <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 2 above high, normal normal 3
#> 2 2 2 normal, below normal elevated 3
#> 3 3 7 below high 3 4
#> 4 4 5 normal high normal 5