当应用的函数非常简单(如.upper()或简单乘法)时,我已经看到了关于使用pandas df.apply()函数的足够的SO问题。但是,当我尝试应用自定义函数时,我会遇到各种错误。我不知道从哪里开始犯这个错误:
这是我的简化示例:
我的假数据:
inp = [{'c1':10, 'c2':1}, {'c1':11,'c2':110}, {'c1':12,'c2':0}]
df1 = pd.DataFrame(inp)
print(df1)
我的虚假功能
def fake_funk(row, upper, lower):
if lower < row['c1'] < upper:
return(1)
elif row['c2'] > upper:
return(2)
else:
return(0)
测试它确实起作用:
for index, row in df1.iterrows():
print(fake_funk(row,11,1))
1
2
0
现在使用apply()
df1.apply(lambda row,: fake_funk(row,11,1))
我得到的错误很长:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item (pandas/_libs/hashtable.c:14010)()
TypeError: an integer is required
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
<ipython-input-116-a554e891e761> in <module>()
----> 1 df1.apply(lambda row,: fake_funk(row,11,1))
/usr/local/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py in apply(self, func, axis, broadcast, raw, reduce, args, **kwds)
4260 f, axis,
4261 reduce=reduce,
-> 4262 ignore_failures=ignore_failures)
4263 else:
4264 return self._apply_broadcast(f, axis)
/usr/local/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py in _apply_standard(self, func, axis, ignore_failures, reduce)
4356 try:
4357 for i, v in enumerate(series_gen):
-> 4358 results[i] = func(v)
4359 keys.append(v.name)
4360 except Exception as e:
<ipython-input-116-a554e891e761> in <lambda>(row)
----> 1 df1.apply(lambda row,: fake_funk(row,11,1))
<ipython-input-115-e95f3470fb25> in fake_funk(row, upper, lower)
1 def fake_funk(row, upper, lower):
----> 2 if lower < row['c1'] < upper:
3 return(1)
4 elif row['c2'] > upper:
5 return(2)
/usr/local/anaconda3/lib/python3.5/site-packages/pandas/core/series.py in __getitem__(self, key)
599 key = com._apply_if_callable(key, self)
600 try:
--> 601 result = self.index.get_value(self, key)
602
603 if not is_scalar(result):
/usr/local/anaconda3/lib/python3.5/site-packages/pandas/core/indexes/base.py in get_value(self, series, key)
2475 try:
2476 return self._engine.get_value(s, k,
-> 2477 tz=getattr(series.dtype, 'tz', None))
2478 except KeyError as e1:
2479 if len(self) > 0 and self.inferred_type in ['integer', 'boolean']:
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4404)()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value (pandas/_libs/index.c:4087)()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5210)()
KeyError: ('c1', 'occurred at index c1')
答案 0 :(得分:3)
默认情况下,apply
沿第0轴运行。看来你需要沿第一轴进行操作。顺便说一句,您也不需要lambda
。只需传递一个args
参数即可。
df1.apply(fake_funk, axis=1, args=(11, 1))
0 1
1 2
2 0
dtype: int64