我在操作以下数据结构时遇到了困难:
属性数据框:
ID Begin_A End_A Interval Value
5 2017-03-01 2017-03-10 2017-03-01 UTC--2017-03-10 UTC Cat1
10 2017-12-01 2017-12-02 2017-12-01 UTC--2017-12-02 UTC Cat2
5 2017-03-01 2017-03-03 2017-03-01 UTC--2017-03-03 UTC Cat3
10 2017-12-05 2017-12-10 2017-12-05 UTC--2017-12-10 UTC Cat4
预订数据框:
ID Begin_A End_A Interval
5 2017-03-03 2017-03-05 2017-03-03 UTC--2017-03-05 UTC
6 2017-05-03 2017-05-05 2017-05-03 UTC--2017-05-05 UTC
8 2017-03-03 2017-03-05 2017-03-03 UTC--2017-03-05 UTC
10 2017-12-05 2017-12-06 2017-12-05 UTC--2017-12-06 UTC
期望的结果框架(预订):
ID Begin_A End_A Interval Attribute_value
5 2017-03-03 2017-03-05 2017-03-03 UTC--2017-03-05 UTC Cat1,Cat3
6 2017-05-03 2017-05-05 2017-05-03 UTC--2017-05-05 UTC NA
8 2017-03-03 2017-03-05 2017-03-03 UTC--2017-03-05 UTC NA
10 2017-12-05 2017-12-06 2017-12-05 UTC--2017-12-06 UTC Cat4
数据框的代码:
library(lubridate)
# Attributes data frame:
date1 <- as.Date(c('2017-3-1','2017-12-1','2017-3-1','2017-12-5'))
date2 <- as.Date(c('2017-3-10','2017-12-2','2017-3-3','2017-12-10'))
attributes <- data.frame(matrix(NA,nrow=4, ncol = 5))
names(attributes) <- c("ID","Begin_A", "End_A", "Interval", "Value")
attributes$ID <- as.numeric(c(5,10,5,10))
attributes$Begin_A <-date1
attributes$End_A <-date2
attributes$Interval <-attributes$Begin_A %--% attributes$End_A
attributes$Value<- as.character(c("Cat1","Cat2","Cat3","Cat4"))
### Bookings data frame:
date1 <- as.Date(c('2017-3-3','2017-5-3','2017-3-3','2017-12-5'))
date2 <- as.Date(c('2017-3-5','2017-5-5','2017-3-5','2017-12-6'))
bookings <- data.frame(matrix(NA,nrow=4, ncol = 4))
names(bookings) <- c("ID","Begin_A", "End_A", "Interval")
bookings$ID <- as.numeric(c(5,6,8,10))
bookings$Begin_A <-date1
bookings$End_A <-date2
bookings$Interval <-bookings$Begin_A %--% bookings$End_A
达到我的结果框架的程序应如下: 从预订中获取ID,过滤属性ID与预订ID匹配的属性数据框的所有行。检查具有匹配属性ID的哪些行也具有重叠的时间间隔(来自lubridate的int_overlaps)。然后从“值”列中获取相应的值,并在Attribute_value列中打印每个值。
答案 0 :(得分:1)
来自tidyverse
的解决方案。
library(tidyverse)
attributes2 <- attributes %>%
select(-Interval) %>%
gather(Type, Date, ends_with("_A")) %>%
select(-Type) %>%
group_by(Value) %>%
complete(Date = full_seq(Date, period = 1), ID) %>%
ungroup()
bookings2 <- bookings %>%
select(-Interval) %>%
gather(Type, Date, ends_with("_A")) %>%
select(-Type) %>%
group_by(ID) %>%
complete(Date = full_seq(Date, period = 1)) %>%
ungroup()
bookings3 <- bookings2 %>%
left_join(attributes2, by = c("ID", "Date")) %>%
group_by(ID) %>%
summarise(Attribute_value = toString(sort(unique(Value)))) %>%
mutate(Attribute_value = ifelse(Attribute_value %in% "", NA, Attribute_value))
bookings4 <- bookings %>% left_join(bookings3, by = "ID")
bookings4
ID Begin_A End_A Interval Attribute_value
1 5 2017-03-03 2017-03-05 2017-03-03 UTC--2017-03-05 UTC Cat1, Cat3
2 6 2017-05-03 2017-05-05 2017-05-03 UTC--2017-05-05 UTC <NA>
3 8 2017-03-03 2017-03-05 2017-03-03 UTC--2017-03-05 UTC <NA>
4 10 2017-12-05 2017-12-06 2017-12-05 UTC--2017-12-06 UTC Cat4