如何在keras中进行多类图像分类?

时间:2017-10-11 10:19:19

标签: image-processing machine-learning keras conv-neural-network multiclass-classification

这就是我所做的。我得到了狗/猫图像分类的代码,我编译并运行并获得80%的准确率。我在火车和验证文件夹中添加了一个类(飞机)文件夹。对以下代码进行了更改

model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

binary class_mode更改为categorical,同时也损失为categorical_crossentropy。还将输出布局sigmoid更改为softmax。  收到以下错误。

ValueError: Error when checking target: expected activation_10 to have shape (None, 1) but got array with shape (16, 3)

我是否需要明确地将培训标签更改为如下所述的分类标签? (我从网站multilabel classification using keras

中读到这个
train_labels = to_categorical(train_labels, num_classes=num_classes) 

我不确定这里会发生什么。请帮忙。我对深度学习相对较新。

模型

model = Sequential()

model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')


validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')
model.fit_generator(
    train_generator,
    steps_per_epoch=nb_train_samples // batch_size,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=nb_validation_samples // batch_size)

2 个答案:

答案 0 :(得分:2)

对于多类分类,最后一个密集层必须有多个节点数等于类的数量,然后激活 checkNetwork() .andThen(netWorkCall()) .subscribe(new DisposableSubscriber<String>() { @Override public void onNext(String s) { Log.d(TAG, "onNext: " + s); } @Override public void onError(Throwable t) { Log.d(TAG, "onError: " + t.getMessage()); } @Override public void onComplete() { Log.d(TAG, "onComplete: "); } }); } private Completable checkNetwork() { return NetworkUtils.isConnected() ? Completable.complete() : Completable.error(new Throwable("Network Error")); } private Flowable<String> netWorkCall() { return Flowable.just("Api response"); } ,即模型的最后两层应该是:

softmax

此外,您的标签(火车和测试)必须是单热编码的;因此,假设您的初始猫和狗被标记为整数(0/1),并且您的新类别(飞机)最初类似地标记为&#39; 2&#39;,您应该将它们转换为如下:

model.add(Dense(num_classes))
model.add(Activation('softmax'))

最后,在术语层面,您正在做的是多类,而不是多标签分类(我已经编辑了帖子的标题) - 最后一个术语用于问题样本可能属于多个类别。

答案 1 :(得分:0)

对于多类分类,NN的最后一层的大小必须等于类的数量。

F.i。对于您的问题(3个类),代码应如下所示:

model = Sequential()

model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(3))
model.add(Activation('softmax'))