我试图编写一个程序(在Fortran 95中),找到自然数最多为N的最小分解为最多4个正整数的总和。
我一直试图添加和删除语句一段时间,以使其仅停留在最小分解但我没有到达任何地方。如何在程序发现最小分解后立即停止程序?
PROGRAM SummeQuadrat
IMPLICIT NONE
real:: start,finish
integer:: a,b,c,d,g,x,y
write(*,*) "Max n"
read (*,*) y
call cpu_time(start)
do x=1,y,1
do a=0,x,1
do b=a,x-a,1
do c=b,x-b,1
do d=c,x-c,1
if (a**2+b**2+c**2+d**2 .eq. x) then
write(*,*) "x=",x,d,c,b,a
end if
end do
end do
end do
end do
end do
call cpu_time(finish)
write(*,*)finish-start
end program SummeQuadrat
答案 0 :(得分:1)
正如我在评论中所解释的那样,我不确定你是只是要问如何摆脱循环或更多。
您可以使用EXIT
语句跳出任何循环。要退出不是当前最内层循环的循环,请使用带标签的循环并使用EXIT
语句中的标签退出该特定循环。
outer: do x = 1, y
do a = 0, x
do b = a, x-a
do c = b, x-b
do d = c, x-c
if (a**2+b**2+c**2+d**2 == x) then
write(*,*) "x=",x,d,c,b,a
if (minimal(a,b,c,d)) exit outer
end if
end do
end do
end do
end do
end do outer
答案 1 :(得分:0)
旧帖子,但这是一个有趣的问题,所以我想我可能会发表自己的解释。
首先,如果我们稍微欺骗并查看the solution,可以看出只有当x = 4 ** k *(8 * m + 7)时才需要所有4个方格。因此,我们可以廉价地搜索1或2平方解,并且在失败时根据上述标准决定是否搜索3或4平方解。
然后,当我们构造我们的循环时,从最大的a倒计数使得a ** 2 <= x,然后最大的b <= a使得a ** 2 + b ** 2 <= x等等。这会将问题从O(x ** 4)降低到O(x ** 1.5),因此可以更快地完成。
对于输出格式,通过明智地使用冒号格式,我们可以编写一种格式,以更可读的方式打印出结果。
! squares.f90 -- Prints out minimal decomposition x into squares
! for 1 <= x <= y (user input)
program squares
use ISO_FORTRAN_ENV, only: REAL64
implicit none
! Need this constant so we can take the square root of an
! integer.
real(REAL64), parameter :: half = 0.5_REAL64
real start, finish
integer a,b,c
integer amax,bmax,cmax,dmax
integer amin,bmin,cmin
integer x,y
! Format for printing out decomposition into squares
character(40) :: fmt = '(i0," = ",i0"**2":3(" + ",i0,"**2":))'
integer nzero
! Get uper bound from user
write(*,'(a)',advance='no') 'Please enter the max N:> '
read(*,*) y
call cpu_time(start)
! Loop over requested range
outer: do x = 1, y
amax = sqrt(x+half)
! Check for perfect square
if(amax**2 == x) then
write(*,fmt) x,amax
cycle outer
end if
! Check for sum of 2 squares
amin = sqrt(x/2+half)
try2: do a = amax, amin, -1
bmax = sqrt(x-a**2+half)
if(bmax > a) exit try2
if(a**2+bmax**2 == x) then
write(*,fmt) x,a,bmax
cycle outer
end if
end do try2
! If trailz(x) is even, then x = 4**k*z, where z is odd
! If further z = 8*m+7, then 4 squares are required, otherwise
! only 3 should suffice.
nzero = trailz(x)
if(iand(nzero,1)==0 .AND. ibits(x,nzero,3)==7) then
amin = sqrt(x/4+half)
do a = amax, amin, -1
bmax = sqrt(x-a**2+half)
bmin = sqrt((x-a**2)/3+half)
do b = min(bmax,a), bmin, -1
cmax = sqrt(x-a**2-b**2+half)
cmin = sqrt((x-a**2-b**2)/2+half)
do c = min(cmax,b), cmin, -1
dmax = sqrt(x-a**2-b**2-c**2+half)
if(a**2+b**2+c**2+dmax**2 == x) then
write(*,fmt) x,a,b,c,dmax
cycle outer
end if
end do
end do
end do
else
amin = sqrt(x/3+half)
do a = amax, amin, -1
bmax = sqrt(x-a**2+half)
bmin = sqrt((x-a**2)/2+half)
do b = min(bmax,a), bmin, -1
cmax = sqrt(x-a**2-b**2+half)
if(a**2+b**2+cmax**2 == x) then
write(*,fmt) x,a,b,cmax
cycle outer
end if
end do
end do
end if
! We should have a solution by now. If not, print out
! an error message and abort.
write(*,'(*(g0))') 'Failure at x = ',x
stop
end do outer
call cpu_time(finish)
write(*,'(*(g0))') 'CPU time = ',finish-start
end program squares