我第一次使用keras + tensorflow。我想指定correlation coefficient作为损失函数。对它进行平方是有意义的,它是一个介于0和1之间的数字,其中0表示不好,1表示良好。
我的基本代码目前如下:
<?php
require_once 'C:/xampp/htdocs/json/pcrov/vendor/autoload.php';
use \pcrov\JsonReader\JsonReader;
ini_set("max_execution_time", 0);
$reader = new JsonReader();
$reader->open("jsonfile.json");
$fo = fopen("csvfile.csv", "w" );
fputs($fo, "name, companyID, ultimateHoldingCompany".PHP_EOL);
while ($reader->read(strpos($key, "foo__"))) {
// I want to loop through the key that contains foo_ and print the key name
$companyID = null;
$entityName = null;
$uhc = null;
$companyID = $key
$entityName = $reader->value();
$UltimateHoldingCompany = $reader['ultimateHoldingCompany']['name']-
>value;
fputs($fo,
$entityName.",".$companyID.",".$UltimateHoldingCompany.PHP_EOL);
}
$reader->close();
?>
如何更改此值以便优化以最小化平方相关系数?
我尝试了以下内容:
def baseline_model():
model = Sequential()
model.add(Dense(4000, input_dim=n**2, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
return model
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=32, verbose=2)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state=0)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print("Standardized: %.2f (%.2f) MSE" % (results.mean(), results.std()))
但是这会崩溃:
def correlation_coefficient(y_true, y_pred):
pearson_r, _ = tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)
return 1-pearson_r**2
def baseline_model():
# create model
model = Sequential()
model.add(Dense(4000, input_dim=n**2, kernel_initializer='normal', activation='relu'))
# model.add(Dense(2000, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss=correlation_coefficient, optimizer='adam')
return model
更新1
按照下面的答案,代码现在运行。不幸的是,Traceback (most recent call last):
File "deeplearning-det.py", line 67, in <module>
results = cross_val_score(pipeline, X, Y, cv=kfold)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line 321, in cross_val_score
pre_dispatch=pre_dispatch)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line 195, in cross_validate
for train, test in cv.split(X, y, groups))
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 779, in __call__
while self.dispatch_one_batch(iterator):
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 625, in dispatch_one_batch
self._dispatch(tasks)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 588, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 111, in apply_async
result = ImmediateResult(func)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 332, in __init__
self.results = batch()
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/user/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 131, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/user/.local/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line 437, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/user/.local/lib/python3.5/site-packages/sklearn/pipeline.py", line 259, in fit
self._final_estimator.fit(Xt, y, **fit_params)
File "/home/user/.local/lib/python3.5/site-packages/keras/wrappers/scikit_learn.py", line 147, in fit
history = self.model.fit(x, y, **fit_args)
File "/home/user/.local/lib/python3.5/site-packages/keras/models.py", line 867, in fit
initial_epoch=initial_epoch)
File "/home/user/.local/lib/python3.5/site-packages/keras/engine/training.py", line 1575, in fit
self._make_train_function()
File "/home/user/.local/lib/python3.5/site-packages/keras/engine/training.py", line 960, in _make_train_function
loss=self.total_loss)
File "/home/user/.local/lib/python3.5/site-packages/keras/legacy/interfaces.py", line 87, in wrapper
return func(*args, **kwargs)
File "/home/user/.local/lib/python3.5/site-packages/keras/optimizers.py", line 432, in get_updates
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py", line 856, in binary_op_wrapper
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 611, in convert_to_tensor
as_ref=False)
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 676, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", line 121, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", line 102, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/home/user/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py", line 364, in make_tensor_proto
raise ValueError("None values not supported.")
ValueError: None values not supported.
和correlation_coefficient
函数给出了彼此不同的值,我不确定它们是否与1- scipy.stats.pearsonr()[0] *相同* 2。
为什么损失功能会产生错误的输出以及它们如何产生 更正为提供与
correlation_coefficient_loss
相同的值?
这是完全自包含的代码,应该只运行:
1 -
scipy.stats.pearsonr()[0]**2
更新2
我放弃了import numpy as np
import sys
import math
from scipy.stats import ortho_group
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import tensorflow as tf
from keras import backend as K
def permanent(M):
n = M.shape[0]
d = np.ones(n)
j = 0
s = 1
f = np.arange(n)
v = M.sum(axis=0)
p = np.prod(v)
while (j < n-1):
v -= 2*d[j]*M[j]
d[j] = -d[j]
s = -s
prod = np.prod(v)
p += s*prod
f[0] = 0
f[j] = f[j+1]
f[j+1] = j+1
j = f[0]
return p/2**(n-1)
def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(xm * ym)
r_den = K.sum(K.sum(K.square(xm)) * K.sum(K.square(ym)))
r = r_num / r_den
return 1 - r**2
def correlation_coefficient(y_true, y_pred):
pearson_r, update_op = tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true)
# find all variables created for this metric
metric_vars = [i for i in tf.local_variables() if 'correlation_coefficient' in i.name.split('/')[1]]
# Add metric variables to GLOBAL_VARIABLES collection.
# They will be initialized for new session.
for v in metric_vars:
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, v)
# force to update metric values
with tf.control_dependencies([update_op]):
pearson_r = tf.identity(pearson_r)
return 1-pearson_r**2
def baseline_model():
# create model
model = Sequential()
model.add(Dense(4000, input_dim=no_rows**2, kernel_initializer='normal', activation='relu'))
# model.add(Dense(2000, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss=correlation_coefficient_loss, optimizer='adam', metrics=[correlation_coefficient])
return model
no_rows = 8
print("Making the input data using seed 7", file=sys.stderr)
np.random.seed(7)
U = ortho_group.rvs(no_rows**2)
U = U[:, :no_rows]
# U is a random orthogonal matrix
X = []
Y = []
print(U)
for i in range(40000):
I = np.random.choice(no_rows**2, size = no_rows)
A = U[I][np.lexsort(np.rot90(U[I]))]
X.append(A.ravel())
Y.append(-math.log(permanent(A)**2, 2))
X = np.array(X)
Y = np.array(Y)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=32, verbose=2)))
pipeline = Pipeline(estimators)
X_train, X_test, y_train, y_test = train_test_split(X, Y,
train_size=0.75, test_size=0.25)
pipeline.fit(X_train, y_train)
功能,现在只使用下面JulioDanielReyes给出的correlation_coefficient
。然而,要么这仍然是错误的,要么keras显然过度拟合。即使我有:
correlation_coefficient_loss
例如,在100个时期之后我损失了0.6653但是当我测试训练模型时损失了0.857。
如何过度拟合中的这么少数量的节点 隐藏层?
答案 0 :(得分:15)
根据keras documentation,您应该将平方相关系数作为函数而不是字符串'mean_squared_error'
传递。
该功能需要接收2个张量(y_true, y_pred)
。你可以看一下keras source code的灵感。
在tensorflow上还实现了一个函数tf.contrib.metrics.streaming_pearson_correlation
。请注意参数的顺序,它应该是这样的:
更新1:根据此issue
初始化局部变量import tensorflow as tf
def correlation_coefficient(y_true, y_pred):
pearson_r, update_op = tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true, name='pearson_r'
# find all variables created for this metric
metric_vars = [i for i in tf.local_variables() if 'pearson_r' in i.name.split('/')]
# Add metric variables to GLOBAL_VARIABLES collection.
# They will be initialized for new session.
for v in metric_vars:
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, v)
# force to update metric values
with tf.control_dependencies([update_op]):
pearson_r = tf.identity(pearson_r)
return 1-pearson_r**2
...
model.compile(loss=correlation_coefficient, optimizer='adam')
更新2 :即使您无法直接使用scipy功能,也可以查看implementation并使用keras backend将其移植到您的代码中。
更新3:张力流函数可能不是可微分的,你的损失函数必须是这样的:(请检查数学)
from keras import backend as K
def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(tf.multiply(xm,ym))
r_den = K.sqrt(tf.multiply(K.sum(K.square(xm)), K.sum(K.square(ym))))
r = r_num / r_den
r = K.maximum(K.minimum(r, 1.0), -1.0)
return 1 - K.square(r)
更新4:两个函数的结果都不同,但correlation_coefficient_loss
与scipy.stats.pearsonr
的结果相同:
以下是测试它的代码:
import tensorflow as tf
from keras import backend as K
import numpy as np
import scipy.stats
inputa = np.array([[3,1,2,3,4,5],
[1,2,3,4,5,6],
[1,2,3,4,5,6]])
inputb = np.array([[3,1,2,3,4,5],
[3,1,2,3,4,5],
[6,5,4,3,2,1]])
with tf.Session() as sess:
a = tf.placeholder(tf.float32, shape=[None])
b = tf.placeholder(tf.float32, shape=[None])
f1 = correlation_coefficient(a, b)
f2 = correlation_coefficient_loss(a, b)
sess.run(tf.global_variables_initializer())
for i in range(inputa.shape[0]):
f1_result, f2_result = sess.run([f1, f2], feed_dict={a: inputa[i], b: inputb[i]})
scipy_result =1- scipy.stats.pearsonr(inputa[i], inputb[i])[0]**2
print("a: "+ str(inputa[i]) + " b: " + str(inputb[i]))
print("correlation_coefficient: " + str(f1_result))
print("correlation_coefficient_loss: " + str(f2_result))
print("scipy.stats.pearsonr:" + str(scipy_result))
结果:
a: [3 1 2 3 4 5] b: [3 1 2 3 4 5]
correlation_coefficient: -2.38419e-07
correlation_coefficient_loss: 0.0
scipy.stats.pearsonr:0.0
a: [1 2 3 4 5 6] b: [3 1 2 3 4 5]
correlation_coefficient: 0.292036
correlation_coefficient_loss: 0.428571
scipy.stats.pearsonr:0.428571428571
a: [1 2 3 4 5 6] b: [6 5 4 3 2 1]
correlation_coefficient: 0.994918
correlation_coefficient_loss: 0.0
scipy.stats.pearsonr:0.0
答案 1 :(得分:1)
以下代码是tensorflow 2.0版中相关系数的实现
import tensorflow as tf
def correlation(x, y):
mx = tf.math.reduce_mean(x)
my = tf.math.reduce_mean(y)
xm, ym = x-mx, y-my
r_num = tf.math.reduce_mean(tf.multiply(xm,ym))
r_den = tf.math.reduce_std(xm) * tf.math.reduce_std(ym)
return = r_num / r_den
它返回与numpy的corrcoef
函数相同的结果。
答案 2 :(得分:0)
r = scipy.stats.pearsonr(inputa[i], inputb[i])[0]
r
是相关性,那么为什么对r
取平方?
scipy_result = 1 - scipy.stats.pearsonr(inputa[i], inputb[i])[0]**2
r
和scipy_result
之间的关系是什么?