我有以下代码:
sauce = urllib.request.urlopen('https://www.iproperty.com.my/sale/selangor/all-commercial/?q=UOA%20Business%20Park').read()
soup = bs.BeautifulSoup(sauce,'html.parser')
price = soup.find_all('ul',class_='listing-primary-price jMWEse')
BUA = soup.find_all('li',class_='attributes-price-per-unit-size-item builtUp-attr fsbnan')
for data in price:
Price = data.text
print(Price)
for data in BUA:
BUA = data.text
print(BUA)
打印价格和 BUA 会给我以下结果:
Price:
RM 1,067,490
RM 2,246,160
RM 929,160
RM 1,321,000
RM 103,840,000
BUA:
Built-up : 1,227 sq. ft.Built-up : 1,227 sq. ft.
Built-up : 2,292 sq. ft.Built-up : 2,292 sq. ft.
Built-up : 1,044 sq. ft.Built-up : 1,044 sq. ft.
Built-up : 1,335 sq. ft.Built-up : 1,335 sq. ft.
Built-up : 118,000 sq. ft.Built-up : 118,000 sq. ft.
我的问题是,如何将价格和 BUA 加载到Pandas Dataframe中,因为我想加入它们并打印最终结果:
Price: BUA:
0 RM 1,067,490 Built-up : 1,227 sq. ft.Built-up : 1,227 sq. ft.
1 RM 2,246,160 Built-up : 2,292 sq. ft.Built-up : 2,292 sq. ft.
2 RM 929,160 Built-up : 1,044 sq. ft.Built-up : 1,044 sq. ft.
3 RM 1,321,000 Built-up : 1,335 sq. ft.Built-up : 1,335 sq. ft.
4 RM 103,840,000 Built-up : 118,000 sq. ft.Built-up : 118,000 sq. ft.
我想将它们放入Pandas Dataframe的另一个原因是因为我需要稍后在Excel中进行一些计算。
答案 0 :(得分:1)
我相信你需要:
a = [data.text for data in price]
b = [data.text for data in BUA]
df = pd.DataFrame({'price':a, 'BUA':b}, columns=['price','BUA'])
答案 1 :(得分:0)
df = pd.DataFrame()
df['price'] = [data.text for data in price]
df['bua'] = [data.text for data in bua]