我有这段代码:
self.value=0.8
for col in df.ix[:,'value1':'value3']:
df = df.iloc[abs(df[col] - self.value).argsort()]
完美地作为main()
函数的一部分。在返回时,它打印:
artist track pos neg neu
4 Sufjan Stevens Casimir Pulaski Day 0.09 0.91 0.0
9 Sufjan Stevens The Only Thing 0.09 0.91 0.0
5 Radiohead Desert Island Disk 0.08 0.92 0.0
0 Sufjan Stevens Should Have Known Better 0.07 0.93 0.0
1 Sufjan Stevens To Be Alone With You 0.05 0.95 0.0
8 Radiohead Daydreaming 0.05 0.95 0.0
3 Sufjan Stevens Death with Dignity 0.03 0.97 0.0
11 Elliott Smith Between the Bars 0.03 0.97 0.0
2 Jeff Buckley Hallelujah 0.39 0.61 0.0
6 Radiohead Codex 0.00 1.00 0.0
7 Aphex Twin Avril 14th 0.00 1.00 0.0
10 Radiohead You And Whose Army? 0.00 1.00 0.0
但是,当我将此函数作为模块的一部分导入时,即使我传递并打印相同的0.8 self.value
,我也会收到以下错误:
df = df.iloc[(df[col] - self.flavor).argsort()]
File "/Users/me/anaconda/lib/python2.7/site-packages/pandas/core/ops.py", line 721, in wrapper
result = wrap_results(safe_na_op(lvalues, rvalues))
File "/Users/me/anaconda/lib/python2.7/site-packages/pandas/core/ops.py", line 682, in safe_na_op
return na_op(lvalues, rvalues)
File "/Users/me/anaconda/lib/python2.7/site-packages/pandas/core/ops.py", line 668, in na_op
result[mask] = op(x[mask], y)
TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('S32') dtype('S32') dtype('S32')
为什么会这样?发生了什么事?
答案 0 :(得分:1)
pd.DataFrame.ix
已被弃用。你应该停止使用它。您使用'value1':'value3'
是危险的,因为它可能包含您未按预期顺序放置列时未预料到的列。
df = pd.DataFrame(
[['a', 'b', 1, 2, 3]],
columns='artist track v1 v2 v3'.split()
)
list(df.loc[:, 'v1':'v3'])
['v1', 'v2', 'v3']
但重新排列列和
list(df.loc[:, ['v1', 'v2', 'artist', 'v3', 'b']].loc[:, 'v1':'v3'])
['v1', 'v2', 'artist', 'v3']
列表中有'artist'
。列'artist'
的类型为字符串,不能从整数或浮点数中减去。
df['artist'] - df['v1']
> TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U21') dtype('<U21') dtype('<U21')
<强>设置强>
随机播放df
df = df.sample(frac=1)
df
artist track pos neg neu
0 Sufjan Stevens Should Have Known Better 0.07 0.93 0.0
8 Radiohead Daydreaming 0.05 0.95 0.0
1 Sufjan Stevens To Be Alone With You 0.05 0.95 0.0
5 Radiohead Desert Island Disk 0.08 0.92 0.0
11 Elliott Smith Between the Bars 0.03 0.97 0.0
7 Aphex Twin Avril 14th 0.00 1.00 0.0
2 Jeff Buckley Hallelujah 0.39 0.61 0.0
4 Sufjan Stevens Casimir Pulaski Day 0.09 0.91 0.0
9 Sufjan Stevens The Only Thing 0.09 0.91 0.0
3 Sufjan Stevens Death with Dignity 0.03 0.97 0.0
6 Radiohead Codex 0.00 1.00 0.0
10 Radiohead You And Whose Army? 0.00 1.00 0.0
<强>解决方案强>
使用np.lexsort
value = 0.8
v = df[['pos', 'neg', 'neu']].values
df.iloc[np.lexsort(np.abs(v - value).T)]
artist track pos neg neu
4 Sufjan Stevens Casimir Pulaski Day 0.09 0.91 0.0
9 Sufjan Stevens The Only Thing 0.09 0.91 0.0
5 Radiohead Desert Island Disk 0.08 0.92 0.0
0 Sufjan Stevens Should Have Known Better 0.07 0.93 0.0
8 Radiohead Daydreaming 0.05 0.95 0.0
1 Sufjan Stevens To Be Alone With You 0.05 0.95 0.0
11 Elliott Smith Between the Bars 0.03 0.97 0.0
3 Sufjan Stevens Death with Dignity 0.03 0.97 0.0
2 Jeff Buckley Hallelujah 0.39 0.61 0.0
7 Aphex Twin Avril 14th 0.00 1.00 0.0
6 Radiohead Codex 0.00 1.00 0.0
10 Radiohead You And Whose Army? 0.00 1.00 0.0