我想排序(最短到最长)数组' a' (如下所示)距离原点或点(在我的情况下为0,0)的距离并将其存储到类似的阵列类型' b'或者更换阵列' a'
下面给出的点是3d numpy数组
[[[ 510. 11.]]
[[ 651. 276.]]
[[ 269. 70.]]
[[ 920. 26.]]
[[ 513. 21.]]
[[ 1197. 620.]]
[[ 407. 268.]]
[[ 452. 35.]]
[[ 435. 3.]]
[[ 520. 20.]]
[[ 1151. 499.]]
[[ 104. 26.]]
[[ 754. 28.]]
[[ 263. 111.]]
[[ 731. 12.]]
[[ 972. 200.]]
[[ 1186. 614.]]
[[ 437. 2.]]
[[ 1096. 68.]]
[[ 997. 201.]]
[[ 1087. 200.]]
[[ 913. 201.]]
[[ 1156. 510.]]
[[ 994. 230.]]
[[ 793. 29.]]
[[ 514. 19.]]]
我找不到有关这类3d np数组排序的任何有用信息
ps:这些要点' a'来自Goodfeaturestotrack,OPEN CV,python 3.6
如何将数组清除为Null类型?
#this is clustering algorithm
for index in range(len(a): #a is the above matrix 3d np array
#find distance was already defined and is euclidean distance formula
if findDistance(a[index][0], a[index][1], a[index + 1][0], a[index + 1][1]) < 3: #calculation euclidean distance between ai and ai+1
c.append(index)
if findDistance(a[index][0], a[index][1], a[index + 1][0], a[index + 1][1]) > 3: #calculation euclidean distance between ai and ai+1
if len(c) > 10:
cp = np.insert(cp, c, 0)
c = [] # should clear c **is this correct ??**
答案 0 :(得分:1)
我喜欢用这种方法来计算几种阵列格式的距离......它不是单线程,但它可以工作。通过搜索'einsum'和numpy作为关键字,可以在堆栈的其他位置找到有关其实现的详细信息。 导入numpy为np required,这只是def而你需要2个数组
import numpy as np
def e_dist(a, b, metric='euclidean'):
"""Distance calculation for 1D, 2D and 3D points using einsum
: a, b - list, tuple, array in 1,2 or 3D form
: metric - euclidean ('e','eu'...), sqeuclidean ('s','sq'...),
:-----------------------------------------------------------------------
"""
a = np.asarray(a)
b = np.atleast_2d(b)
a_dim = a.ndim
b_dim = b.ndim
if a_dim == 1:
a = a.reshape(1, 1, a.shape[0])
if a_dim >= 2:
a = a.reshape(np.prod(a.shape[:-1]), 1, a.shape[-1])
if b_dim > 2:
b = b.reshape(np.prod(b.shape[:-1]), b.shape[-1])
diff = a - b
dist_arr = np.einsum('ijk,ijk->ij', diff, diff)
if metric[:1] == 'e':
dist_arr = np.sqrt(dist_arr)
dist_arr = np.squeeze(dist_arr)
return dist_arr
然后,您可以根据需要对结果进行排序,例如
a = np.random.randint(0, 10, size=(10,2))
orig = np.array([0,0])
e_dist(a, orig)
array([ 4.12, 9.9 , 7.07, 6.08, 3.16, 10.63, 8.54, 7.28, 7.21,
6.08])
np.sort(e_dist(a, orig))
array([ 3.16, 4.12, 6.08, 6.08, 7.07, 7.21, 7.28, 8.54, 9.9 ,
10.63])
附录
我应该补充一点,您可以使用argsort获取排序值,如下所示
np.argsort(e_dist(a, orig))
array([4, 0, 3, 9, 2, 8, 7, 6, 1, 5], dtype=int64)
idx = np.argsort(art.e_dist(a, orig))
closest = a[idx]
array([[3, 1],
[1, 4],
[1, 6],
[6, 1],
[5, 5],
[4, 6],
[2, 7],
[8, 3],
[7, 7],
[7, 8]])
答案 1 :(得分:0)
def distance_squared(x1,y1,x2,y2):
return (x1-x2)**2 + (y1-y2)**2
target_point = 0,0
sorted(a,key=lambda point:distance_squared(target_point[0],target_point[1],*point[0]))