我有两个文件。 functions.py
有一个函数,并从该函数创建一个pyspark udf。 main.py
尝试导入udf。但是,main.py
似乎无法访问functions.py
中的函数。
functions.py:
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
def do_something(x):
return x + 'hello'
sample_udf = udf(lambda x: do_something(x), StringType())
main.py:
from functions import sample_udf, do_something
df = spark.read.load(file)
df.withColumn("sample",sample_udf(col("text")))
这会导致错误:
17/10/03 19:35:29 WARN TaskSetManager: Lost task 0.0 in stage 3.0 (TID 6, ip-10-223-181-5.ec2.internal, executor 3): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/lib/spark/python/pyspark/worker.py", line 164, in main
func, profiler, deserializer, serializer = read_udfs(pickleSer, infile)
File "/usr/lib/spark/python/pyspark/worker.py", line 93, in read_udfs
arg_offsets, udf = read_single_udf(pickleSer, infile)
File "/usr/lib/spark/python/pyspark/worker.py", line 79, in read_single_udf
f, return_type = read_command(pickleSer, infile)
File "/usr/lib/spark/python/pyspark/worker.py", line 55, in read_command
command = serializer._read_with_length(file)
File "/usr/lib/spark/python/pyspark/serializers.py", line 169, in _read_with_length
return self.loads(obj)
File "/usr/lib/spark/python/pyspark/serializers.py", line 454, in loads
return pickle.loads(obj)
AttributeError: 'module' object has no attribute 'do_something'
如果我绕过do_something
函数并将其放在udf中,例如:udf(lambda x: x + ' hello', StringType())
,UDF导入正常 - 但我的函数稍微长一点,将它封装起来会很好在一个单独的功能。实现这一目标的正确方法是什么?
答案 0 :(得分:3)
只需将其添加为答案: -
将py文件添加到sparkcontext中,以使其可供执行者使用。
sc.addPyFile("functions.py")
from functions import sample_udf
这是我的测试笔记本
谢谢, 查尔斯。
答案 1 :(得分:0)
我认为更干净的解决方案是使用udf装饰器定义udf函数:
from pyspark.sql.functions as F
from pyspark.sql.types import StringType
@F.udf
def sample_udf(x):
return x + 'hello'
使用此解决方案,udf不会引用任何其他函数,并且您不需要在主代码中使用sc.addPyFile
。
from functions import sample_udf, do_something
df = spark.read.load(file)
df.withColumn("sample",sample_udf(col("text")))
# It works :)
对于一些较旧的spark版本,装饰器不支持键入的udf,您可能需要按如下方式定义自定义装饰器:
from pyspark.sql.functions as F
from pyspark.sql.types as t
# Custom udf decorator which accept return type
def udf_typed(returntype=t.StringType()):
def _typed_udf_wrapper(func):
return F.udf(func, returntype)
return _typed_udf_wrapper
@udf_typed(t.IntegerType())
def my_udf(x)
return int(x)