我有一个带有int列的数据框:
df=pd.DataFrame(data=2*np.random.randint(0,high=10,size=5),columns=['N'])
N
0 8
1 4
2 8
3 14
4 2
5 18
我想生成另一个数据框:
df2=
N ID
0 8 2
1 4 1
2 8 2
3 14 3
4 2 0
5 18 4
其中ID
是N
我需要一个计算上廉价的解决方案,因为它需要在大型数据帧上运行并经常更新。
答案 0 :(得分:2)
使用np.unique
及其可选的arg return_inverse
-
In [268]: df['ID'] = np.unique(df.N, return_inverse=1)[1]
In [269]: df
Out[269]:
N ID
0 8 2
1 4 1
2 8 2
3 14 3
4 2 0
5 18 4
运行时测试(问题说它需要 - a computationally cheap solution
) -
# Scale given sample 10,000 times in size and high-limit
In [373]: df=pd.DataFrame(data=2*np.random.randint(0,high=100000,size=50000),columns=['N'])
# @jezrael's soln
In [374]: %timeit df['ID1'] = df['N'].rank(method='dense').sub(1).astype(int)
100 loops, best of 3: 4.74 ms per loop
# Proposed in this post
In [376]: %timeit df['ID2'] = np.unique(df.N, return_inverse=1)[1]
100 loops, best of 3: 3.94 ms per loop
答案 1 :(得分:1)