我正在处理tensorflow中的以下代码,并且它工作正常,但我决定保存我的会话并恢复它以便预测任何测试变量,我没有得到任何错误但是第二个代码我恢复了session输出始终为零,表示hidden_1_layer,hidden_2_layer,hidden_3_layer和output_layer为零,并且值已恢复,
为了正确保存/恢复会话,我无法弄清楚我必须改变什么
以下是我写的代码:
nn的培训代码:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float',[None, 784])
y = tf.placeholder('float')
v1 = tf.Variable(3, name='v1')
v2 = tf.Variable(3, name='v2')
saver = tf.train.Saver()
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes]))}
def neural_network_model(data):
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']) , hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']) , hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']) , hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict = {x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs,' loss:',epoch_loss)
saver.save(sess, "C:/Users/jack/Desktop/test/model.ckpt")
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy', accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))
train_neural_network(x)
我想要恢复会话并使用nn i预测值的代码:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float',[None, 784])
y = tf.placeholder('float')
v1 = tf.Variable(3, name='v1')
saver = tf.train.Saver()
hidden_1_layer = {'weights':tf.Variable(tf.zeros([784, n_nodes_hl1])),
'biases':tf.Variable(tf.zeros([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.zeros([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.zeros([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.zeros([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.zeros([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.zeros([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.zeros([n_classes]))}
def neural_network_model(data):
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']) , hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']) , hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']) , hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(data):
prediction = neural_network_model(x)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
saver.restore(sess,"C:/Users/jack/Desktop/test/model.ckpt")
result = (sess.run(tf.argmax(prediction.eval(feed_dict={x:data}),1)))
print(result)
train_neural_network([mnist.train.images[2]])
print([mnist.train.labels[2]])
谢谢你的帮助
答案 0 :(得分:1)
调用tf.train.Saver()
时,它会为图表中可用的所有变量创建一个保护程序。因此应该在定义所有网络后创建:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float',[None, 784])
y = tf.placeholder('float')
v1 = tf.Variable(3, name='v1')
v2 = tf.Variable(3, name='v2')
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes]))}
saver = tf.train.Saver()
def neural_network_model(data):
(恢复相同)
您可以通过打印print(saver._var_list)