根据条件创建火花数据帧

时间:2017-09-29 05:25:52

标签: scala apache-spark hive spark-dataframe

我有2个数据框: dataframe1有70000行,如:

location_id, location, flag
1,Canada,active
2,Paris,active
3,London,active
4,Berlin,active

第二个df lookup修改了每个位置的ID(此数据框不时被修改),如:

id,location
1,Canada
10,Paris
4,Berlin
3,London

我的问题是,我需要从lookup获取新ID作为location_id,如果location_idid不同,则保留相应位置的旧ID,并将标记名称设置为非活动状态(维护历史数据)和新标识,每个位置的标志名称都是活动的。因此,配置单元中的输出表应如下所示:

location_id,location,flag
1,Canada,active
2,Paris,inactive
10,Paris,active
3,London,active
4,Berlin,active

我试图先加入这两个框架。然后在Joined DF上,我正在执行操作,以保存hive中的所有记录。我尝试了以下操作:

val joinedFrame = dataframe1.join(lookup, "location")
val df_temp = joinedFrame.withColumn("flag1", when($"tag_id" === $"tag_number", "active").otherwise("inactive"))
var count = 1
df_temp.foreach(x => {
  val flag1 = x.getAs[String]("flag1").toString
  val flag = x.getAs[String]("flag").toString
  val location_id = x.getAs[String]("location_id").toString
  val location = x.getAs[String]("location").toString
  val id = x.getAs[String]("id").toString
  if ((count != 1)&&(flag1 != flag)){
    println("------not equal-------",flag1,"-------",flag,"---------",id,"---------",location,"--------",location_id)
    val df_main = sc.parallelize(Seq((location_id, location,flag1), (id, location, flag))).toDF("location_id", "location", "flag")
    df_main.show
    df_main.write.insertInto("location_coords")
  }
  count += 1
})

它会打印具有不同ID的位置值,但在将这些值保存为dataframe时,我会遇到异常:

not equal------inactive------active---10---------Paris---------2    
17/09/29 03:43:29 ERROR Executor: Exception in task 0.0 in stage 25.0 (TID 45)
    java.lang.NullPointerException
            at $line83.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:75)
            at $line83.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:65)
            at scala.collection.Iterator$class.foreach(Iterator.scala:893)
            at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
            at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:918)
            at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:918)
            at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
            at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
            at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
            at org.apache.spark.scheduler.Task.run(Task.scala:99)
            at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
            at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
            at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
            at java.lang.Thread.run(Thread.java:748)
    17/09/29 03:43:29 WARN TaskSetManager: Lost task 0.0 in stage 25.0 (TID 45, localhost, executor driver): java.lang.NullPointerException
            at $line83.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:75)
            at $line83.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:65)
            at scala.collection.Iterator$class.foreach(Iterator.scala:893)
            at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
            at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:918)
            at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:918)
            at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
            at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
            at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
            at org.apache.spark.scheduler.Task.run(Task.scala:99)
            at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
            at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
            at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
            at java.lang.Thread.run(Thread.java:748)

1 个答案:

答案 0 :(得分:1)

根据您的评论,我认为最简单的方法是在ID上使用join。在进行外连接时,缺少的列将最终为null,这些行是已更新且您感兴趣的行。

之后剩下的就是更新location列以防它是空的以及标志列,请参阅下面的代码(请注意我稍微更改了列名):

val spark = SparkSession.builder.getOrCreate()
import spark.implicits._

val df = Seq((1,"Canada","active"),(2,"Paris","active"),(3,"London","active"),(4,"Berlin","active"))
  .toDF("id", "location", "flag")
val df2 = Seq((1,"Canada"),(10,"Paris"),(4,"Berlin"),(3,"London"))
  .toDF("id", "location_new") 

val df3 = df.join(df2, Seq("id"), "outer")
  .filter($"location".isNull or $"location_new".isNull)
  .withColumn("location", when($"location_new".isNull, $"location").otherwise($"location_new"))
  .withColumn("flag", when($"location" === $"location_new", "active").otherwise("inactive"))
  .drop("location_new")

> df3.show()
+---+--------+--------+
| id|location|    flag|
+---+--------+--------+
| 10|   Paris|  active|
|  2|   Paris|inactive|
+---+--------+--------+

在此之后,您可以使用此新数据框来更新配置单元表。