我有这个numpy数组,它是其他numpy数组的连接
array([array([[ 0., 1., 0., 0., 1., 0.]]),
array([[ 1., 0., 0., 1., 0., 0.]]),
array([[ 0., 0., 0., 0., 1., 1.]]),
array([[ 0., 1., 0., 0., 0., 1.]]),
array([[ 0., 1., 0., 1., 0., 0.]]),
array([[ 1., 0., 0., 0., 0., 1.]])], dtype=object)
其当前形状为(6,)
。我想要的是形状(6,6)
array([[ 0., 1., 0., 0., 1., 0.],
[ 1., 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 1., 1.],
[ 0., 1., 0., 0., 0., 1.],
[ 0., 1., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0., 1.]], dtype=object)
有没有一种解决这个问题的方法,还是我必须遍历数组并附加它?
答案 0 :(得分:1)
你应该试试这个:
my_array = my_array.reshape(6,6)
按原样粘贴上面的数组,因为它会删除第三个维度。上面的@Divikar评论中显示的其他方法,如vstack和concatenate也可以用于此目的
答案 1 :(得分:1)
如果显示是准确的,并且数组确实是(6,),那么我们必须重新创建它:
In [27]: array=np.array
In [28]: alist = [array([[ 0., 1., 0., 0., 1., 0.]]),
...: array([[ 1., 0., 0., 1., 0., 0.]]),
...: array([[ 0., 0., 0., 0., 1., 1.]]),
...: array([[ 0., 1., 0., 0., 0., 1.]]),
...: array([[ 0., 1., 0., 1., 0., 0.]]),
...: array([[ 1., 0., 0., 0., 0., 1.]])]
...:
In [29]: A = np.empty((6,),object)
In [30]: A
Out[30]: array([None, None, None, None, None, None], dtype=object)
In [31]: A[:]=alist
In [32]: A
Out[32]:
array([array([[ 0., 1., 0., 0., 1., 0.]]),
array([[ 1., 0., 0., 1., 0., 0.]]),
array([[ 0., 0., 0., 0., 1., 1.]]),
array([[ 0., 1., 0., 0., 0., 1.]]),
array([[ 0., 1., 0., 1., 0., 0.]]),
array([[ 1., 0., 0., 0., 0., 1.]])], dtype=object)
reshape
不起作用:
In [33]: A.reshape(6,6)
...
ValueError: cannot reshape array of size 6 into shape (6,6)
但是可以将数组视为列表,并将其赋予concatenate
:
In [34]: np.concatenate(A, axis=1)
Out[34]:
array([[ 0., 1., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1.,
0., 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
In [35]: np.concatenate(A, axis=0)
Out[35]:
array([[ 0., 1., 0., 0., 1., 0.],
[ 1., 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 1., 1.],
[ 0., 1., 0., 0., 0., 1.],
[ 0., 1., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0., 1.]])
列表上的连接也同样适用:np.concatenate(alist, axis=0)
我应该注意,生成的数组是dtype float
,而不是object
。它可以用astype
转换,但是谁想要呢?
简单的copy-n-paste产生一个3d数组,因为外部array
忽略了内部分区并创建了一个高维数组:
In [37]: array([array([[ 0., 1., 0., 0., 1., 0.]]),
...: array([[ 1., 0., 0., 1., 0., 0.]]),
...: array([[ 0., 0., 0., 0., 1., 1.]]),
...: array([[ 0., 1., 0., 0., 0., 1.]]),
...: array([[ 0., 1., 0., 1., 0., 0.]]),
...: array([[ 1., 0., 0., 0., 0., 1.]])])
Out[37]:
array([[[ 0., 1., 0., 0., 1., 0.]],
[[ 1., 0., 0., 1., 0., 0.]],
...
[[ 1., 0., 0., 0., 0., 1.]]])
In [38]: _.shape
Out[38]: (6, 1, 6)
所以我们需要注意如何重新创建这样的案例。