您如何测试一组给定数字的所有可能的添加组合,以便它们加起来给定的最终数字?
示例:
答案 0 :(得分:212)
这个问题可以通过过滤掉那些到达目标的所有可能总和的递归组合来解决。这是Python中的算法:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print "sum(%s)=%s" % (partial, target)
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i+1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3,9,8,4,5,7,10],15)
#Outputs:
#sum([3, 8, 4])=15
#sum([3, 5, 7])=15
#sum([8, 7])=15
#sum([5, 10])=15
以下Standford's Abstract Programming lecture非常好地解释了这种类型的算法 - 这个视频非常适合理解递归如何用于生成解的排列。
修改强>
以上作为生成器函数,使其更有用。因yield from
而需要Python 3.3+。
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
以下是相同算法的Java版本:
package tmp;
import java.util.ArrayList;
import java.util.Arrays;
class SumSet {
static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
int s = 0;
for (int x: partial) s += x;
if (s == target)
System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
if (s >= target)
return;
for(int i=0;i<numbers.size();i++) {
ArrayList<Integer> remaining = new ArrayList<Integer>();
int n = numbers.get(i);
for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
partial_rec.add(n);
sum_up_recursive(remaining,target,partial_rec);
}
}
static void sum_up(ArrayList<Integer> numbers, int target) {
sum_up_recursive(numbers,target,new ArrayList<Integer>());
}
public static void main(String args[]) {
Integer[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
}
}
这是完全相同的启发式。我的Java有点生疏,但我认为很容易理解。
Java解决方案的C#转换: (来自@JeremyThompson)
public static void Main(string[] args)
{
List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int target = 15;
sum_up(numbers, target);
}
private static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers, target, new List<int>());
}
private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
int s = 0;
foreach (int x in partial) s += x;
if (s == target)
Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);
if (s >= target)
return;
for (int i = 0; i < numbers.Count; i++)
{
List<int> remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);
List<int> partial_rec = new List<int>(partial);
partial_rec.Add(n);
sum_up_recursive(remaining, target, partial_rec);
}
}
Ruby解决方案: (@emaillenin)
def subset_sum(numbers, target, partial=[])
s = partial.inject 0, :+
# check if the partial sum is equals to target
puts "sum(#{partial})=#{target}" if s == target
return if s >= target # if we reach the number why bother to continue
(0..(numbers.length - 1)).each do |i|
n = numbers[i]
remaining = numbers.drop(i+1)
subset_sum(remaining, target, partial + [n])
end
end
subset_sum([3,9,8,4,5,7,10],15)
编辑:复杂性讨论
正如其他人所说,这是一个NP-hard problem。它可以在指数时间O(2 ^ n)内求解,例如对于n = 10,将有1024个可能的解。如果您尝试触及的目标位于较低范围内,则此算法可以正常工作。例如:
subset_sum([1,2,3,4,5,6,7,8,9,10],100000)
生成1024个分支,因为目标永远不会过滤掉可能的解决方案。
另一方面subset_sum([1,2,3,4,5,6,7,8,9,10],10)
仅生成175个分支,因为到达10
的目标会过滤掉许多组合。
如果N
和Target
是大数字,则应该进入解决方案的近似版本。
答案 1 :(得分:31)
在Haskell中:
filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]
J:
(]#~12345=+/@>)(]<@#~[:#:@i.2^#)1 5 22 15 0 ...
您可能会注意到,两者都采用相同的方法并将问题分为两部分:生成权力集的每个成员,并检查每个成员的总和与目标。
还有其他解决方案,但这是最直接的。
您是否需要任何一方的帮助,或找到不同的方法?
答案 2 :(得分:30)
这个问题的解决方案已在互联网上获得了一百万次。这个问题被称为硬币改变问题。您可以在http://rosettacode.org/wiki/Count_the_coins找到解决方案,并在http://jaqm.ro/issues/volume-5,issue-2/pdfs/patterson_harmel.pdf(或Google 硬币更改问题)找到它的数学模型。
顺便说一句,Tsagadai的Scala解决方案很有意思。此示例生成1或0.作为副作用,它在控制台上列出所有可能的解决方案。它显示了解决方案,但无法以任何方式使其可用。
为了尽可能有用,代码应该返回List[List[Int]]
以便获得解决方案的数量(列表列表的长度),“最佳”解决方案(最短列表),或者所有可能的解决方案。
这是一个例子。这是非常低效的,但它很容易理解。
object Sum extends App {
def sumCombinations(total: Int, numbers: List[Int]): List[List[Int]] = {
def add(x: (Int, List[List[Int]]), y: (Int, List[List[Int]])): (Int, List[List[Int]]) = {
(x._1 + y._1, x._2 ::: y._2)
}
def sumCombinations(resultAcc: List[List[Int]], sumAcc: List[Int], total: Int, numbers: List[Int]): (Int, List[List[Int]]) = {
if (numbers.isEmpty || total < 0) {
(0, resultAcc)
} else if (total == 0) {
(1, sumAcc :: resultAcc)
} else {
add(sumCombinations(resultAcc, sumAcc, total, numbers.tail), sumCombinations(resultAcc, numbers.head :: sumAcc, total - numbers.head, numbers))
}
}
sumCombinations(Nil, Nil, total, numbers.sortWith(_ > _))._2
}
println(sumCombinations(15, List(1, 2, 5, 10)) mkString "\n")
}
运行时,会显示:
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
List(1, 1, 1, 2, 2, 2, 2, 2, 2)
List(1, 2, 2, 2, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5)
List(1, 1, 1, 1, 1, 1, 1, 1, 2, 5)
List(1, 1, 1, 1, 1, 1, 2, 2, 5)
List(1, 1, 1, 1, 2, 2, 2, 5)
List(1, 1, 2, 2, 2, 2, 5)
List(2, 2, 2, 2, 2, 5)
List(1, 1, 1, 1, 1, 5, 5)
List(1, 1, 1, 2, 5, 5)
List(1, 2, 2, 5, 5)
List(5, 5, 5)
List(1, 1, 1, 1, 1, 10)
List(1, 1, 1, 2, 10)
List(1, 2, 2, 10)
List(5, 10)
可以单独使用sumCombinations()
函数,并可以进一步分析结果以显示“最佳”解决方案(最短列表)或解决方案数量(列表数量)。
请注意,即使这样,也可能无法完全满足要求。可能会发生解决方案中每个列表的顺序很重要。在这种情况下,每个列表必须与其元素的组合一样多次复制。或者我们可能只对不同的组合感兴趣。
例如,我们可能会认为List(5, 10)
应该提供两种组合:List(5, 10)
和List(10, 5)
。对于List(5, 5, 5)
,它可以提供三种组合或仅一种,具体取决于要求。对于整数,这三种排列是等价的,但如果我们处理硬币,就像在“硬币改变问题”中那样,它们就不是。
在要求中也没有说明每个数字(或硬币)是否只能使用一次或多次的问题。我们可以(并且我们应该!)将问题概括为每个数字的出现列表。这在现实生活中转化为“用一组硬币(而不是一组硬币值)赚取一定数量金钱的可能方式”。最初的问题只是这个问题的一个特例,我们根据需要为每个硬币的价值计算每个硬币的出现次数。
答案 3 :(得分:25)
Javascript版本:
function subsetSum(numbers, target, partial) {
var s, n, remaining;
partial = partial || [];
// sum partial
s = partial.reduce(function (a, b) {
return a + b;
}, 0);
// check if the partial sum is equals to target
if (s === target) {
console.log("%s=%s", partial.join("+"), target)
}
if (s >= target) {
return; // if we reach the number why bother to continue
}
for (var i = 0; i < numbers.length; i++) {
n = numbers[i];
remaining = numbers.slice(i + 1);
subsetSum(remaining, target, partial.concat([n]));
}
}
subsetSum([3,9,8,4,5,7,10],15);
// output:
// 3+8+4=15
// 3+5+7=15
// 8+7=15
// 5+10=15
答案 4 :(得分:11)
@msalvadores代码答案的C#版本
void Main()
{
int[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new List<int>(numbers.ToList()),target);
}
static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
int s = 0;
foreach (int x in part)
{
s += x;
}
if (s == target)
{
Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
}
if (s >= target)
{
return;
}
for (int i = 0;i < numbers.Count;i++)
{
var remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count;j++)
{
remaining.Add(numbers[j]);
}
var part_rec = new List<int>(part);
part_rec.Add(n);
sum_up_recursive(remaining,target,part_rec);
}
}
static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers,target,new List<int>());
}
答案 5 :(得分:9)
相同算法的C ++版本
#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
int s = 0;
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
s += *cit;
}
if(s == target)
{
std::cout << "sum([";
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
std::cout << *cit << ",";
}
std::cout << "])=" << target << std::endl;
}
if(s >= target)
return;
int n;
for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
{
n = *ai;
std::list<int> remaining;
for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
{
if(aj == ai)continue;
remaining.push_back(*aj);
}
std::list<int> partial_rec=partial;
partial_rec.push_back(n);
subset_sum_recursive(remaining,target,partial_rec);
}
}
void subset_sum(std::list<int> numbers,int target)
{
subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
std::list<int> a;
a.push_back (3); a.push_back (9); a.push_back (8);
a.push_back (4);
a.push_back (5);
a.push_back (7);
a.push_back (10);
int n = 15;
//std::cin >> n;
subset_sum(a, n);
return 0;
}
答案 6 :(得分:5)
另一个python解决方案是使用itertools.combinations
模块,如下所示:
#!/usr/local/bin/python
from itertools import combinations
def find_sum_in_list(numbers, target):
results = []
for x in range(len(numbers)):
results.extend(
[
combo for combo in combinations(numbers ,x)
if sum(combo) == target
]
)
print results
if __name__ == "__main__":
find_sum_in_list([3,9,8,4,5,7,10], 15)
输出:[(8, 7), (5, 10), (3, 8, 4), (3, 5, 7)]
答案 7 :(得分:4)
Thank you.. ephemient
我已将上述逻辑从python转换为php ..
<?php
$data = array(array(2,3,5,10,15),array(4,6,23,15,12),array(23,34,12,1,5));
$maxsum = 25;
print_r(bestsum($data,$maxsum)); //function call
function bestsum($data,$maxsum)
{
$res = array_fill(0, $maxsum + 1, '0');
$res[0] = array(); //base case
foreach($data as $group)
{
$new_res = $res; //copy res
foreach($group as $ele)
{
for($i=0;$i<($maxsum-$ele+1);$i++)
{
if($res[$i] != 0)
{
$ele_index = $i+$ele;
$new_res[$ele_index] = $res[$i];
$new_res[$ele_index][] = $ele;
}
}
}
$res = $new_res;
}
for($i=$maxsum;$i>0;$i--)
{
if($res[$i]!=0)
{
return $res[$i];
break;
}
}
return array();
}
?>
答案 8 :(得分:4)
我以为我会使用这个问题的答案,但我不能,所以这是我的答案。它在Structure and Interpretation of Computer Programs中使用了答案的修改版本。我认为这是一个更好的递归解决方案,应该更多地取悦纯粹主义者。
我的回答是在Scala中(如果我的Scala很糟糕,我很抱歉,我刚开始学习它)。 findSumCombinations 疯狂是对递归的原始列表进行排序和唯一以防止欺骗。
def findSumCombinations(target: Int, numbers: List[Int]): Int = {
cc(target, numbers.distinct.sortWith(_ < _), List())
}
def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
if (target == 0) {println(solution); 1 }
else if (target < 0 || numbers.length == 0) 0
else
cc(target, numbers.tail, solution)
+ cc(target - numbers.head, numbers, numbers.head :: solution)
}
使用它:
> findSumCombinations(12345, List(1,5,22,15,0,..))
* Prints a whole heap of lists that will sum to the target *
答案 9 :(得分:3)
这是一个Java版本,当复杂性O(t*N)
(动态解决方案)大于指数算法时,它非常适合小N和非常大的目标和。我的版本在中间攻击中使用了一次相遇,同时稍微移动以减少从经典幼稚O(n*2^n)
到O(2^(n/2))
的复杂性。
如果要将其用于32到64个元素之间的集合,则应将表示步骤函数中当前子集的int
更改为long
,但性能会明显显着降低设定的大小增加。如果要将其用于具有奇数个元素的集合,则应该在集合中添加0以使其成为偶数。
import java.util.ArrayList;
import java.util.List;
public class SubsetSumMiddleAttack {
static final int target = 100000000;
static final int[] set = new int[]{ ... };
static List<Subset> evens = new ArrayList<>();
static List<Subset> odds = new ArrayList<>();
static int[][] split(int[] superSet) {
int[][] ret = new int[2][superSet.length / 2];
for (int i = 0; i < superSet.length; i++) ret[i % 2][i / 2] = superSet[i];
return ret;
}
static void step(int[] superSet, List<Subset> accumulator, int subset, int sum, int counter) {
accumulator.add(new Subset(subset, sum));
if (counter != superSet.length) {
step(superSet, accumulator, subset + (1 << counter), sum + superSet[counter], counter + 1);
step(superSet, accumulator, subset, sum, counter + 1);
}
}
static void printSubset(Subset e, Subset o) {
String ret = "";
for (int i = 0; i < 32; i++) {
if (i % 2 == 0) {
if ((1 & (e.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
else {
if ((1 & (o.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
}
if (ret.startsWith(" ")) ret = ret.substring(3) + " = " + (e.sum + o.sum);
System.out.println(ret);
}
public static void main(String[] args) {
int[][] superSets = split(set);
step(superSets[0], evens, 0,0,0);
step(superSets[1], odds, 0,0,0);
for (Subset e : evens) {
for (Subset o : odds) {
if (e.sum + o.sum == target) printSubset(e, o);
}
}
}
}
class Subset {
int subset;
int sum;
Subset(int subset, int sum) {
this.subset = subset;
this.sum = sum;
}
}
答案 10 :(得分:3)
这类似于硬币更换问题
public class CoinCount
{
public static void main(String[] args)
{
int[] coins={1,4,6,2,3,5};
int count=0;
for (int i=0;i<coins.length;i++)
{
count=count+Count(9,coins,i,0);
}
System.out.println(count);
}
public static int Count(int Sum,int[] coins,int index,int curSum)
{
int count=0;
if (index>=coins.length)
return 0;
int sumNow=curSum+coins[index];
if (sumNow>Sum)
return 0;
if (sumNow==Sum)
return 1;
for (int i= index+1;i<coins.length;i++)
count+=Count(Sum,coins,i,sumNow);
return count;
}
}
答案 11 :(得分:2)
非常有效的算法使用我在c ++中写的表几年前。
如果设置PRINT 1,它将打印所有组合(但不会使用有效的方法)。
它非常有效,可以在不到10毫秒的时间内计算超过10 ^ 14个组合。
#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"
#define SUM 300
#define MAXNUMsSIZE 30
#define PRINT 0
long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];
int main()
{
int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
int sum=SUM;
int size=sizeof(Nums)/sizeof(int);
int i,j,a[]={0};
long long N=0;
//CTime timer1;
for(i=0;i<SUM;++i)
for(j=0;j<MAXNUMsSIZE;++j)
table1[i][j]=-1;
N = CountAddToSum(sum,Nums,size,a,0); //algorithm
//timer1.Get_Passd();
//printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
printf("\nN=%lld \n", N);
getchar();
return 1;
}
long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
static int totalmem=0, maxmem=0;
int i,*rnew;
long long result1=0,result2=0;
if(s<0) return 0;
if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
if(s==0)
{
if(PRINT) printr(r, rsize);
return 1;
}
if(arrsize==0) return 0;
//else
rnew=(int*)malloc((rsize+1)*sizeof(int));
for(i=0;i<rsize;++i) rnew[i]=r[i];
rnew[rsize]=arr[arrsize-1];
result1 = CountAddToSum(s,arr,arrsize-1,rnew,rsize);
result2 = CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
table1[s][arrsize]=result1+result2;
free(rnew);
return result1+result2;
}
void printr(const int r[], int rsize)
{
int lastr=r[0],count=0,i;
for(i=0; i<rsize;++i)
{
if(r[i]==lastr)
count++;
else
{
printf(" %d*%d ",count,lastr);
lastr=r[i];
count=1;
}
}
if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);
printf("\n");
}
答案 12 :(得分:2)
(主要答案的)Perl版本:
use strict;
sub subset_sum {
my ($numbers, $target, $result, $sum) = @_;
print 'sum('.join(',', @$result).") = $target\n" if $sum == $target;
return if $sum >= $target;
subset_sum([@$numbers[$_ + 1 .. $#$numbers]], $target,
[@{$result||[]}, $numbers->[$_]], $sum + $numbers->[$_])
for (0 .. $#$numbers);
}
subset_sum([3,9,8,4,5,7,10,6], 15);
结果:
sum(3,8,4) = 15
sum(3,5,7) = 15
sum(9,6) = 15
sum(8,7) = 15
sum(4,5,6) = 15
sum(5,10) = 15
JavaScript版本:
const subsetSum = (numbers, target, partial = [], sum = 0) => {
if (sum < target)
numbers.forEach((num, i) =>
subsetSum(numbers.slice(i + 1), target, partial.concat([num]), sum + num));
else if (sum == target)
console.log('sum(%s) = %s', partial.join(), target);
}
subsetSum([3,9,8,4,5,7,10,6], 15);
实际上返回结果(而不是打印结果)的Java脚本:
const subsetSum=(n,t,p=[],s=0,r=[])=>(s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,[...p,l],s+l,r)):s==t?r.push(p):0,r);
console.log(subsetSum([3,9,8,4,5,7,10,6], 15));
还有我最喜欢的带有回调的一线:
const subsetSum=(n,t,cb,p=[],s=0)=>s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,cb,[...p,l],s+l)):s==t?cb(p):0;
subsetSum([3,9,8,4,5,7,10,6], 15, console.log);
答案 13 :(得分:2)
Java 非递归版本,它只是不断添加元素并将它们重新分配到可能的值中。 0
被忽略,适用于固定列表(您可以使用的内容)或可重复数字列表。
import java.util.*;
public class TestCombinations {
public static void main(String[] args) {
ArrayList<Integer> numbers = new ArrayList<>(Arrays.asList(0, 1, 2, 2, 5, 10, 20));
LinkedHashSet<Integer> targets = new LinkedHashSet<Integer>() {{
add(4);
add(10);
add(25);
}};
System.out.println("## each element can appear as many times as needed");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, true);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
System.out.println("## each element can appear only once");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, false);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
}
public static class Combinations {
private boolean allowRepetitions;
private int[] repetitions;
private ArrayList<Integer> numbers;
private Integer target;
private Integer sum;
private boolean hasNext;
private Set<String> combinations;
/**
* Constructor.
*
* @param numbers Numbers that can be used to calculate the sum.
* @param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target) {
this(numbers, target, true);
}
/**
* Constructor.
*
* @param numbers Numbers that can be used to calculate the sum.
* @param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target, boolean allowRepetitions) {
this.allowRepetitions = allowRepetitions;
if (this.allowRepetitions) {
Set<Integer> numbersSet = new HashSet<>(numbers);
this.numbers = new ArrayList<>(numbersSet);
} else {
this.numbers = numbers;
}
this.numbers.removeAll(Arrays.asList(0));
Collections.sort(this.numbers);
this.target = target;
this.repetitions = new int[this.numbers.size()];
this.combinations = new LinkedHashSet<>();
this.sum = 0;
if (this.repetitions.length > 0)
this.hasNext = true;
else
this.hasNext = false;
}
/**
* Calculate and return the sum of the current combination.
*
* @return The sum.
*/
private Integer calculateSum() {
this.sum = 0;
for (int i = 0; i < repetitions.length; ++i) {
this.sum += repetitions[i] * numbers.get(i);
}
return this.sum;
}
/**
* Redistribute picks when only one of each number is allowed in the sum.
*/
private void redistribute() {
for (int i = 1; i < this.repetitions.length; ++i) {
if (this.repetitions[i - 1] > 1) {
this.repetitions[i - 1] = 0;
this.repetitions[i] += 1;
}
}
if (this.repetitions[this.repetitions.length - 1] > 1)
this.repetitions[this.repetitions.length - 1] = 0;
}
/**
* Get the sum of the next combination. When 0 is returned, there's no other combinations to check.
*
* @return The sum.
*/
private Integer next() {
if (this.hasNext && this.repetitions.length > 0) {
this.repetitions[0] += 1;
if (!this.allowRepetitions)
this.redistribute();
this.calculateSum();
for (int i = 0; i < this.repetitions.length && this.sum != 0; ++i) {
if (this.sum > this.target) {
this.repetitions[i] = 0;
if (i + 1 < this.repetitions.length) {
this.repetitions[i + 1] += 1;
if (!this.allowRepetitions)
this.redistribute();
}
this.calculateSum();
}
}
if (this.sum.compareTo(0) == 0)
this.hasNext = false;
}
return this.sum;
}
/**
* Calculate all combinations whose sum equals target.
*/
public void calculateCombinations() {
while (this.hasNext) {
if (this.next().compareTo(target) == 0)
this.combinations.add(this.toString());
}
}
/**
* Return all combinations whose sum equals target.
*
* @return Combinations as a set of strings.
*/
public Set<String> getCombinations() {
return this.combinations;
}
@Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder("" + sum + ": ");
for (int i = 0; i < repetitions.length; ++i) {
for (int j = 0; j < repetitions[i]; ++j) {
stringBuilder.append(numbers.get(i) + " ");
}
}
return stringBuilder.toString();
}
}
}
示例输入:
numbers: 0, 1, 2, 2, 5, 10, 20
targets: 4, 10, 25
示例输出:
## each element can appear as many times as needed
4: 1 1 1 1
4: 1 1 2
4: 2 2
10: 1 1 1 1 1 1 1 1 1 1
10: 1 1 1 1 1 1 1 1 2
10: 1 1 1 1 1 1 2 2
10: 1 1 1 1 2 2 2
10: 1 1 2 2 2 2
10: 2 2 2 2 2
10: 1 1 1 1 1 5
10: 1 1 1 2 5
10: 1 2 2 5
10: 5 5
10: 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 2 2 2 2 2 2 2 2 2 2 2
25: 1 2 2 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 2 2 2 2 2 2 2 5
25: 1 1 1 1 2 2 2 2 2 2 2 2 5
25: 1 1 2 2 2 2 2 2 2 2 2 5
25: 2 2 2 2 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 2 2 2 5 5
25: 1 1 1 1 1 1 1 2 2 2 2 5 5
25: 1 1 1 1 1 2 2 2 2 2 5 5
25: 1 1 1 2 2 2 2 2 2 5 5
25: 1 2 2 2 2 2 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 5 5 5
25: 1 1 1 1 1 1 1 1 2 5 5 5
25: 1 1 1 1 1 1 2 2 5 5 5
25: 1 1 1 1 2 2 2 5 5 5
25: 1 1 2 2 2 2 5 5 5
25: 2 2 2 2 2 5 5 5
25: 1 1 1 1 1 5 5 5 5
25: 1 1 1 2 5 5 5 5
25: 1 2 2 5 5 5 5
25: 5 5 5 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 10
25: 1 1 1 1 1 1 1 1 1 2 2 2 10
25: 1 1 1 1 1 1 1 2 2 2 2 10
25: 1 1 1 1 1 2 2 2 2 2 10
25: 1 1 1 2 2 2 2 2 2 10
25: 1 2 2 2 2 2 2 2 10
25: 1 1 1 1 1 1 1 1 1 1 5 10
25: 1 1 1 1 1 1 1 1 2 5 10
25: 1 1 1 1 1 1 2 2 5 10
25: 1 1 1 1 2 2 2 5 10
25: 1 1 2 2 2 2 5 10
25: 2 2 2 2 2 5 10
25: 1 1 1 1 1 5 5 10
25: 1 1 1 2 5 5 10
25: 1 2 2 5 5 10
25: 5 5 5 10
25: 1 1 1 1 1 10 10
25: 1 1 1 2 10 10
25: 1 2 2 10 10
25: 5 10 10
25: 1 1 1 1 1 20
25: 1 1 1 2 20
25: 1 2 2 20
25: 5 20
## each element can appear only once
4: 2 2
10: 1 2 2 5
10: 10
25: 1 2 2 20
25: 5 20
答案 14 :(得分:1)
下面的Excel VBA版本。我需要在VBA中实现这一点(不是我的偏好,不要评判我!),并使用此页面上的答案进行处理。我正在上传以防其他人也需要VBA版本。
Option Explicit
Public Sub SumTarget()
Dim numbers(0 To 6) As Long
Dim target As Long
target = 15
numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
numbers(5) = 7: numbers(6) = 10
Call SumUpTarget(numbers, target)
End Sub
Public Sub SumUpTarget(numbers() As Long, target As Long)
Dim part() As Long
Call SumUpRecursive(numbers, target, part)
End Sub
Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)
Dim s As Long, i As Long, j As Long, num As Long
Dim remaining() As Long, partRec() As Long
s = SumArray(part)
If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
If s >= target Then Exit Sub
If (Not Not numbers) <> 0 Then
For i = 0 To UBound(numbers)
Erase remaining()
num = numbers(i)
For j = i + 1 To UBound(numbers)
AddToArray remaining, numbers(j)
Next j
Erase partRec()
CopyArray partRec, part
AddToArray partRec, num
SumUpRecursive remaining, target, partRec
Next i
End If
End Sub
Private Function ArrayToString(x() As Long) As String
Dim n As Long, result As String
result = "{" & x(n)
For n = LBound(x) + 1 To UBound(x)
result = result & "," & x(n)
Next n
result = result & "}"
ArrayToString = result
End Function
Private Function SumArray(x() As Long) As Long
Dim n As Long
SumArray = 0
If (Not Not x) <> 0 Then
For n = LBound(x) To UBound(x)
SumArray = SumArray + x(n)
Next n
End If
End Function
Private Sub AddToArray(arr() As Long, x As Long)
If (Not Not arr) <> 0 Then
ReDim Preserve arr(0 To UBound(arr) + 1)
Else
ReDim Preserve arr(0 To 0)
End If
arr(UBound(arr)) = x
End Sub
Private Sub CopyArray(destination() As Long, source() As Long)
Dim n As Long
If (Not Not source) <> 0 Then
For n = 0 To UBound(source)
AddToArray destination, source(n)
Next n
End If
End Sub
输出(写入立即窗口)应为:
SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15
答案 15 :(得分:1)
到目前为止,有很多解决方案,但是所有解决方案的形式都是生成然后过滤。这意味着他们可能会花费大量时间在无法解决问题的递归路径上。
这里是O(size_of_array * (number_of_sums + number_of_solutions))
的解决方案。换句话说,它使用动态编程来避免枚举永远不会匹配的解决方案。
对于嘻嘻笑,我使用正负两个数字进行了这项工作,并使其成为迭代器。它将适用于Python 2.3及更高版本。
def subset_sum_iter(array, target):
sign = 1
array = sorted(array)
if target < 0:
array = reversed(array)
sign = -1
last_index = {0: [-1]}
for i in range(len(array)):
for s in list(last_index.keys()):
new_s = s + array[i]
if 0 < (new_s - target) * sign:
pass # Cannot lead to target
elif new_s in last_index:
last_index[new_s].append(i)
else:
last_index[new_s] = [i]
# Now yield up the answers.
def recur (new_target, max_i):
for i in last_index[new_target]:
if i == -1:
yield [] # Empty sum.
elif max_i <= i:
break # Not our solution.
else:
for answer in recur(new_target - array[i], i):
answer.append(array[i])
yield answer
for answer in recur(target, len(array)):
yield answer
这是将其与数组和目标一起使用的示例,其他解决方案中使用的过滤方法将永远无法完成。
def is_prime (n):
for i in range(2, n):
if 0 == n%i:
return False
elif n < i*i:
return True
if n == 2:
return True
else:
return False
def primes (limit):
n = 2
while True:
if is_prime(n):
yield(n)
n = n+1
if limit < n:
break
for answer in subset_sum_iter(primes(1000), 76000):
print(answer)
这将在2秒内打印所有522个答案。先前的方法很幸运在宇宙的当前生命周期中找到任何答案。 (整个空间有2^168 = 3.74144419156711e+50
个可能的组合需要经历。这花了一段时间。)
答案 16 :(得分:1)
我不喜欢上面看到的Javascript解决方案。这是我使用部分应用,闭包和递归构建的版本:
好吧,我主要担心的是,如果组合数组可以满足目标要求,希望这种方法可以帮助您找到其余的组合
这里只是设置目标并传递组合数组。
function main() {
const target = 10
const getPermutationThatSumT = setTarget(target)
const permutation = getPermutationThatSumT([1, 4, 2, 5, 6, 7])
console.log( permutation );
}
我想出的当前实现
function setTarget(target) {
let partial = [];
return function permute(input) {
let i, removed;
for (i = 0; i < input.length; i++) {
removed = input.splice(i, 1)[0];
partial.push(removed);
const sum = partial.reduce((a, b) => a + b)
if (sum === target) return partial.slice()
if (sum < target) permute(input)
input.splice(i, 0, removed);
partial.pop();
}
return null
};
}
答案 17 :(得分:1)
建议作为答案:
以下是使用es2015 generators:
的解决方案numbers
使用生成器实际上非常有用,因为它允许您在找到有效子集后立即暂停脚本执行。这与没有生成器(即缺乏状态)的解决方案形成对比,后者必须遍历{{1}}的每个子集
答案 18 :(得分:1)
这是R
的解决方案subset_sum = function(numbers,target,partial=0){
if(any(is.na(partial))) return()
s = sum(partial)
if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
if(s > target) return()
for( i in seq_along(numbers)){
n = numbers[i]
remaining = numbers[(i+1):length(numbers)]
subset_sum(remaining,target,c(partial,n))
}
}
答案 19 :(得分:1)
这是一个更好的版本,具有更好的输出格式和C ++ 11功能:
void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums)
{
int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
if (currentSum > target)
return;
if (currentSum == target)
{
std::cout << "sum([";
for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
cout << *it << ",";
cout << *std::prev(partialNums.end());
std::cout << "])=" << target << std::endl;
}
for (auto it = nums.begin(); it != nums.end(); ++it)
{
std::vector<int> remaining;
for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
remaining.push_back(*it2);
std::vector<int> partial = partialNums;
partial.push_back(*it);
subset_sum_rec(remaining, target, partial);
}
}
答案 20 :(得分:1)
我正在为scala任务做类似的事情。想在这里发布我的解决方案:
def countChange(money: Int, coins: List[Int]): Int = {
def getCount(money: Int, remainingCoins: List[Int]): Int = {
if(money == 0 ) 1
else if(money < 0 || remainingCoins.isEmpty) 0
else
getCount(money, remainingCoins.tail) +
getCount(money - remainingCoins.head, remainingCoins)
}
if(money == 0 || coins.isEmpty) 0
else getCount(money, coins)
}
答案 21 :(得分:1)
Java解决方案的Swift 3转换:(来自@JeremyThompson)
protocol _IntType { }
extension Int: _IntType {}
extension Array where Element: _IntType {
func subsets(to: Int) -> [[Element]]? {
func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {
var sum: Int = 0
for x in partial {
sum += x as! Int
}
if sum == target {
solution.append(partial)
}
guard sum < target else {
return
}
for i in stride(from: 0, to: numbers.count, by: 1) {
var remaining = [Element]()
for j in stride(from: i + 1, to: numbers.count, by: 1) {
remaining.append(numbers[j])
}
var partial_rec = [Element](partial)
partial_rec.append(numbers[i])
sum_up_recursive(remaining, target, partial_rec, &solution)
}
}
var solutions = [[Element]]()
sum_up_recursive(self, to, [Element](), &solutions)
return solutions.count > 0 ? solutions : nil
}
}
用法:
let numbers = [3, 9, 8, 4, 5, 7, 10]
if let solution = numbers.subsets(to: 15) {
print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
print("not possible")
}
答案 22 :(得分:1)
使用excel查找组合 - (相当简单)。 (你的电脑一定不能太慢)
下载“Sum to Target”excel文件。
按照网站页面上的说明进行操作。
希望这会有所帮助。
答案 23 :(得分:1)
这也可用于打印所有答案
public void recur(int[] a, int n, int sum, int[] ans, int ind) {
if (n < 0 && sum != 0)
return;
if (n < 0 && sum == 0) {
print(ans, ind);
return;
}
if (sum >= a[n]) {
ans[ind] = a[n];
recur(a, n - 1, sum - a[n], ans, ind + 1);
}
recur(a, n - 1, sum, ans, ind);
}
public void print(int[] a, int n) {
for (int i = 0; i < n; i++)
System.out.print(a[i] + " ");
System.out.println();
}
时间复杂度是指数级的。 2 ^ n
的顺序答案 24 :(得分:0)
PHP版,受到Keith Beller的C#版本的启发。
bala的PHP版本对我不起作用,因为我不需要对数字进行分组。我想要一个更简单的实现,其中包含一个目标值和一个数字池。此功能还将修剪任何重复的条目。
/**
* Calculates a subset sum: finds out which combinations of numbers
* from the numbers array can be added together to come to the target
* number.
*
* Returns an indexed array with arrays of number combinations.
*
* Example:
*
* <pre>
* $matches = subset_sum(array(5,10,7,3,20), 25);
* </pre>
*
* Returns:
*
* <pre>
* Array
* (
* [0] => Array
* (
* [0] => 3
* [1] => 5
* [2] => 7
* [3] => 10
* )
* [1] => Array
* (
* [0] => 5
* [1] => 20
* )
* )
* </pre>
*
* @param number[] $numbers
* @param number $target
* @param array $part
* @return array[number[]]
*/
function subset_sum($numbers, $target, $part=null)
{
// we assume that an empty $part variable means this
// is the top level call.
$toplevel = false;
if($part === null) {
$toplevel = true;
$part = array();
}
$s = 0;
foreach($part as $x)
{
$s = $s + $x;
}
// we have found a match!
if($s == $target)
{
sort($part); // ensure the numbers are always sorted
return array(implode('|', $part));
}
// gone too far, break off
if($s >= $target)
{
return null;
}
$matches = array();
$totalNumbers = count($numbers);
for($i=0; $i < $totalNumbers; $i++)
{
$remaining = array();
$n = $numbers[$i];
for($j = $i+1; $j < $totalNumbers; $j++)
{
$remaining[] = $numbers[$j];
}
$part_rec = $part;
$part_rec[] = $n;
$result = subset_sum($remaining, $target, $part_rec);
if($result)
{
$matches = array_merge($matches, $result);
}
}
if(!$toplevel)
{
return $matches;
}
// this is the top level function call: we have to
// prepare the final result value by stripping any
// duplicate results.
$matches = array_unique($matches);
$result = array();
foreach($matches as $entry)
{
$result[] = explode('|', $entry);
}
return $result;
}
答案 25 :(得分:0)
首先得出0。零是加法的标识,因此在这种特殊情况下,根据半规半截式定律,它是无用的。如果您想爬升至正数,还可以推导负数。否则,您还需要进行减法运算。
所以...您可以在此特定工作上获得的最快算法如下JS中给出的。
function items2T([n,...ns],t){
var c = ~~(t/n);
return ns.length ? Array(c+1).fill()
.reduce((r,_,i) => r.concat(items2T(ns, t-n*i).map(s => Array(i).fill(n).concat(s))),[])
: t % n ? []
: [Array(c).fill(n)];
};
var data = [3, 9, 8, 4, 5, 7, 10],
result;
console.time("combos");
result = items2T(data, 15);
console.timeEnd("combos");
console.log(JSON.stringify(result));
这是一个非常快的算法,但是如果您对data
数组降序进行排序,它将更快。使用.sort()
无关紧要,因为该算法将以 更少的递归调用结束。
答案 26 :(得分:0)
function solve(n){
let DP = [];
DP[0] = DP[1] = DP[2] = 1;
DP[3] = 2;
for (let i = 4; i <= n; i++) {
DP[i] = DP[i-1] + DP[i-3] + DP[i-4];
}
return DP[n]
}
console.log(solve(5))
这是JS的动态解决方案,用于说明任何人可以获得多少总和。如果您考虑时间和空间的复杂性,那么这可能是正确的解决方案。
答案 27 :(得分:0)
import java.util.*;
public class Main{
int recursionDepth = 0;
private int[][] memo;
public static void main(String []args){
int[] nums = new int[] {5,2,4,3,1};
int N = nums.length;
Main main = new Main();
main.memo = new int[N+1][N+1];
main._findCombo(0, N-1,nums, 8, 0, new LinkedList() );
System.out.println(main.recursionDepth);
}
private void _findCombo(
int from,
int to,
int[] nums,
int targetSum,
int currentSum,
LinkedList<Integer> list){
if(memo[from][to] != 0) {
currentSum = currentSum + memo[from][to];
}
if(currentSum > targetSum) {
return;
}
if(currentSum == targetSum) {
System.out.println("Found - " +list);
return;
}
recursionDepth++;
for(int i= from ; i <= to; i++){
list.add(nums[i]);
memo[from][i] = currentSum + nums[i];
_findCombo(i+1, to,nums, targetSum, memo[from][i], list);
list.removeLast();
}
}
}
答案 28 :(得分:0)
我将C#示例移植到Objective-c并且没有在响应中看到它:
//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];
//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
int s = 0;
for (NSNumber* x in partial)
{ s += [x intValue]; }
if (s == target)
{ NSLog(@"Sum[%@]", partial); }
if (s >= target)
{ return; }
for (int i = 0;i < [numbers count];i++ )
{
int n = [numbers[i] intValue];
NSMutableArray* remaining = [[NSMutableArray alloc] init];
for (int j = i + 1; j < [numbers count];j++)
{ [remaining addObject:@([numbers[j] intValue])]; }
NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
[partRec addObject:@(n)];
[self findSums:remaining target:target part:partRec];
}
}
答案 29 :(得分:0)
@ KeithBeller的回答略微改变了变量名称和一些评论。
public static void Main(string[] args)
{
List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int targetSum = 15;
SumUp(input, targetSum);
}
public static void SumUp(List<int> input, int targetSum)
{
SumUpRecursive(input, targetSum, new List<int>());
}
private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
{
// Sum up partial
int sum = 0;
foreach (int x in listToSum)
sum += x;
//Check sum matched
if (sum == targetSum)
Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);
//Check sum passed
if (sum >= targetSum)
return;
//Iterate each input character
for (int i = 0; i < remaining.Count; i++)
{
//Build list of remaining items to iterate
List<int> newRemaining = new List<int>();
for (int j = i + 1; j < remaining.Count; j++)
newRemaining.Add(remaining[j]);
//Update partial list
List<int> newListToSum = new List<int>(listToSum);
int currentItem = remaining[i];
newListToSum.Add(currentItem);
SumUpRecursive(newRemaining, targetSum, newListToSum);
}
}'
答案 30 :(得分:0)
func sum(array : [Int]) -> Int{
var sum = 0
array.forEach { (item) in
sum = item + sum
}
return sum
}
func susetNumbers(array :[Int], target : Int, subsetArray: [Int],result : inout [[Int]]) -> [[Int]]{
let s = sum(array: subsetArray)
if(s == target){
print("sum\(subsetArray) = \(target)")
result.append(subsetArray)
}
for i in 0..<array.count{
let n = array[i]
let remaning = Array(array[(i+1)..<array.count])
susetNumbers(array: remaning, target: target, subsetArray: subsetArray + [n], result: &result)
}
return result
}
var resultArray = [[Int]]()
let newA = susetNumbers(array: [1,2,3,4,5], target: 5, subsetArray: [],result:&resultArray)
print(resultArray)
答案 31 :(得分:0)
用于解决此问题的迭代C ++堆栈解决方案。与其他迭代解决方案不同,它不会产生不必要的中间序列副本。
// Given a positive integer, return all possible combinations of
// positive integers that sum up to it.
vector<vector<int>> print_all_sum(int target){
vector<vector<int>> output;
vector<int> stack;
int curr_min = 1;
int sum = 0;
while (curr_min < target) {
sum += curr_min;
if (sum >= target) {
if (sum == target) {
output.push_back(stack); // make a copy
output.back().push_back(curr_min);
}
sum -= curr_min + stack.back();
curr_min = stack.back() + 1;
stack.pop_back();
} else {
stack.push_back(curr_min);
}
}
return output;
}