我有一个pandas DataFrame测量值和相应的权重:
df = pd.DataFrame({'x': np.random.randn(1000), 'w': np.random.rand(1000)})
我想在逐个元素的同时平滑测量值(x
)
权重(w
)。这与滑动窗口的重量无关,
我也想申请(例如三角形窗口或更高级的东西)。因此,要计算每个窗口内的平滑值,函数不仅应通过窗口函数(例如三角形)对x
的切片元素进行加权,还应通过w
中的相应元素加权。{/ p>
据我所知,pd.rolling_apply
不会这样做,因为它适用于
给定x
和w
上的函数。同样,pd.rolling_window
也不会考虑源DataFrame的元素权重;加权窗口(例如“三角形”)可以是用户定义的,但是预先固定。
这是我的慢速实施:
def rolling_weighted_triangle(x, w, window_size):
"""Smooth with triangle window, also using per-element weights."""
# Simplify slicing
wing = window_size // 2
# Pad both arrays with mirror-image values at edges
xp = np.r_[x[wing-1::-1], x, x[:-wing-1:-1]]
wp = np.r_[w[wing-1::-1], w, w[:-wing-1:-1]]
# Generate a (triangular) window of weights to slide
incr = 1. / (wing + 1)
ramp = np.arange(incr, 1, incr)
triangle = np.r_[ramp, 1.0, ramp[::-1]]
# Apply both sets of weights over each window
slices = (slice(i - wing, i + wing + 1) for i in xrange(wing, len(x) + wing))
out = (np.average(xp[slc], weights=triangle * wp[slc]) for slc in slices)
return np.fromiter(out, x.dtype)
如何使用numpy / scipy / pandas加快速度?
数据帧可以占用RAM的一个重要部分(10k到200M行),例如在前面分配每个元素的窗口权重的2D数组太多了。我正在尝试最小化临时数组的使用,也许正在使用
np.lib.stride_tricks.as_strided
和np.apply_along_axis
或np.convolve
,但没有找到完全复制上述内容的任何内容。
这是等效的统一窗口,而不是三角形(使用get_sliding_window trick from here) - 关闭但不完全在那里:
def get_sliding_window(a, width):
"""Sliding window over a 2D array.
Source: https://stackoverflow.com/questions/37447347/dataframe-representation-of-a-rolling-window/41406783#41406783
"""
# NB: a = df.values or np.vstack([x, y]).T
s0, s1 = a.strides
m, n = a.shape
return as_strided(a,
shape=(m-width+1, width, n),
strides=(s0, s0, s1))
def rolling_weighted_average(x, w, window_size):
"""Rolling weighted average with a uniform 'boxcar' window."""
wing = window_size // 2
window_size = 2 * wing + 1
xp = np.r_[x[wing-1::-1], x, x[:-wing-1:-1]]
wp = np.r_[w[wing-1::-1], w, w[:-wing-1:-1]]
x_w = np.vstack([xp, wp]).T
wins = get_sliding_window(x_w, window_size)
# TODO - apply triangle window weights - multiply over wins[,:,1]?
result = np.average(wins[:,:,0], axis=1, weights=wins[:,:,1])
return result
答案 0 :(得分:1)
你可以在那里使用卷积,就像这样 -
def rolling_weighted_triangle_conv(x, w, window_size):
"""Smooth with triangle window, also using per-element weights."""
# Simplify slicing
wing = window_size // 2
# Pad both arrays with mirror-image values at edges
xp = np.concatenate(( x[wing-1::-1], x, x[:-wing-1:-1] ))
wp = np.concatenate(( w[wing-1::-1], w, w[:-wing-1:-1] ))
# Generate a (triangular) window of weights to slide
incr = 1. / (wing + 1)
ramp = np.arange(incr, 1, incr)
triangle = np.r_[ramp, 1.0, ramp[::-1]]
D = np.convolve(wp*xp, triangle)[window_size-1:-window_size+1]
N = np.convolve(wp, triangle)[window_size-1:-window_size+1]
return D/N
运行时测试
In [265]: x = np.random.randn(1000)
...: w = np.random.rand(1000)
...: WSZ = 7
...:
In [266]: out1 = rolling_weighted_triangle(x, w, window_size=WSZ)
...: out2 = rolling_weighted_triangle_conv(x, w, window_size=WSZ)
...: print(np.allclose(out1, out2))
...:
True
In [267]: %timeit rolling_weighted_triangle(x, w, window_size=WSZ)
...: %timeit rolling_weighted_triangle_conv(x, w, window_size=WSZ)
...:
100 loops, best of 3: 10.2 ms per loop
10000 loops, best of 3: 32.9 µs per loop
300x+
加速!