以下架构用于创建简单的代数公式。 variables
用于创建x=3+4y
等公式。 variables_has_sub_variables
用于合并前面提到的公式,并使用sign
列(仅限+1或-1)来确定是否应将公式添加或减去组合。
例如,variables
表可能包含以下数据:Implied Formulas
列实际上不在表中,但仅用于说明目的。
变量表
+-----------+-----------+-------+------------------+
| variables | intercept | slope | Implied Formula |
+-----------+-----------+-------+------------------+
| 1 | 2.86 | -0.82 | Y1=+2.86-0.82*X1 |
| 2 | 2.96 | -3.49 | Y2=+2.96-3.49*X2 |
| 3 | 2.56 | 2.81 | Y3=+2.56+2.81*X3 |
| 4 | 3.04 | -3.43 | Y4=+3.04-3.43*X4 |
| 5 | -1.94 | 4.11 | Y5=-1.94+4.11*X5 |
| 6 | -1.21 | -0.62 | Y6=-1.21-0.62*X6 |
| 7 | 0.88 | -0.61 | Y7=+0.88-0.61*X7 |
| 8 | -2.77 | -0.34 | Y8=-2.77-0.34*X8 |
| 9 | 1.81 | 1.65 | Y9=+1.81+1.65*X9 |
+-----------+-----------+-------+------------------+
然后,根据以下variables_has_sub_variables
数据,合并的变量会产生X7=+Y1-Y2+Y3
,X8=+Y4+Y5-Y7
和X9=+Y6-Y7+Y8
。可以使用导致Y7
等的Y8
表格导出下一个Y9
,variables
和Y7=+0.88-0.61*X7
。请注意,应用程序将阻止无限循环,例如插入记录variables
等于7且sub_variables
等于9,因为变量9基于变量7。
variables_has_sub_variables 表
+-----------+---------------+------+
| variables | sub_variables | sign |
+-----------+---------------+------+
| 7 | 1 | 1 |
| 7 | 2 | -1 |
| 7 | 3 | 1 |
| 8 | 4 | 1 |
| 8 | 5 | 1 |
| 8 | 7 | -1 |
| 9 | 6 | 1 |
| 9 | 7 | -1 |
| 9 | 8 | 1 |
+-----------+---------------+------+
我的目标是给出任何变量(即1到9),确定常量和根变量,其中根变量被定义为不在variables_has_sub_variables.variables
中(我也可以轻松地root
列到variables
如果需要),这些根变量包括使用我上面的示例数据的1到6。
对于根变量这样做更容易,因为没有sub_variables并且只是Y1=+2.86-0.82*X1
。
对变量7这样做有点棘手:
Y7=+0.88-0.61*X7
=+0.88-0.61*(+Y1-Y2+Y3)
=+0.88-0.61*(+(+2.86-0.82*X1)-(+2.96-3.49*X2)+( +2.56+2.81*X3))
= -0.62 + 0.50*X1 - 2.13*X2 - 1.71*X3
现在是SQL。以下是我创建表格的方式:
CREATE DATABASE algebra;
USE algebra;
CREATE TABLE `variables` (
`variables` INT NOT NULL,
`slope` DECIMAL(6,2) NOT NULL DEFAULT 1,
`intercept` DECIMAL(6,2) NOT NULL DEFAULT 0,
PRIMARY KEY (`variables`))
ENGINE = InnoDB;
CREATE TABLE `variables_has_sub_variables` (
`variables` INT NOT NULL,
`sub_variables` INT NOT NULL,
`sign` TINYINT NOT NULL,
PRIMARY KEY (`variables`, `sub_variables`),
INDEX `fk_variables_has_variables_variables1_idx` (`sub_variables` ASC),
INDEX `fk_variables_has_variables_variables_idx` (`variables` ASC),
CONSTRAINT `fk_variables_has_variables_variables`
FOREIGN KEY (`variables`)
REFERENCES `variables` (`variables`)
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT `fk_variables_has_variables_variables1`
FOREIGN KEY (`sub_variables`)
REFERENCES `variables` (`variables`)
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;
INSERT INTO variables(variables,intercept,slope) VALUES (1,2.86,-0.82),(2,2.96,-3.49),(3,2.56,2.81),(4,3.04,-3.43),(5,-1.94,4.11),(6,-1.21,-0.62),(7,0.88,-0.61),(8,-2.77,-0.34),(9,1.81,1.65);
INSERT INTO variables_has_sub_variables(variables,sub_variables,sign) VALUES (7,1,1),(7,2,-1),(7,3,1),(8,4,1),(8,5,1),(8,7,-1),(9,6,1),(9,7,-1),(9,8,1);
现在查询。对于以下结果,XXXX
为7,8和9。在每次查询之前,我都会显示我的预期结果。
WITH RECURSIVE t AS (
SELECT v.variables, v.slope, v.intercept
FROM variables v
WHERE v.variables=XXXX
UNION ALL
SELECT v.variables, vhsv.sign*t.slope*v.slope slope, vhsv.sign*t.slope*v.intercept intercept
FROM t
INNER JOIN variables_has_sub_variables vhsv ON vhsv.variables=t.variables
INNER JOIN variables v ON v.variables=vhsv.sub_variables
)
SELECT variables, SUM(slope) constant FROM t GROUP BY variables
UNION SELECT 'intercept' variables, SUM(intercept) intercept FROM t;
变量7所需
+-----------+----------+
| variables | constant |
+-----------+----------+
| 1 | 0.50 |
| 2 | -2.13 |
| 3 | -1.71 |
| intercept | -0.6206 |
+-----------+----------+
变量7实际
+-----------+----------+
| variables | constant |
+-----------+----------+
| 1 | 0.50 |
| 2 | -2.13 |
| 3 | -1.71 |
| 7 | -0.61 |
| intercept | -0.61 |
+-----------+----------+
5 rows in set (0.00 sec)
变量8所需
+-----------+-----------+
| variables | constant |
+-----------+-----------+
| 1 | 0.17 |
| 2 | -0.72 |
| 3 | -0.58 |
| 4 | 1.17 |
| 5 | -1.40 |
| intercept | -3.355004 |
+-----------+-----------+
变量8实际
+-----------+----------+
| variables | constant |
+-----------+----------+
| 1 | 0.17 |
| 2 | -0.73 |
| 3 | -0.59 |
| 4 | 1.17 |
| 5 | -1.40 |
| 7 | -0.21 |
| 8 | -0.34 |
| intercept | -3.36 |
+-----------+----------+
8 rows in set (0.00 sec)
变量9所需
+-----------+------------+
| variables | constant |
+-----------+------------+
| 1 | -0.54 |
| 2 | 2.32 |
| 3 | 1.87 |
| 4 | 1.92 |
| 5 | -2.31 |
| 6 | -1.02 |
| intercept | -4.6982666 |
+-----------+------------+
变量9实际
+-----------+----------+
| variables | constant |
+-----------+----------+
| 1 | -0.55 |
| 2 | 2.33 |
| 3 | 1.88 |
| 4 | 1.92 |
| 5 | -2.30 |
| 6 | -1.02 |
| 7 | 0.67 |
| 8 | -0.56 |
| 9 | 1.65 |
| intercept | -4.67 |
+-----------+----------+
10 rows in set (0.00 sec)
我需要做的就是检测哪些变量不是根变量并将其过滤掉。该如何实现?
回应JNevill的回答: 对于v.variables 9
+-----------+-------+-------+----------+
| variables | depth | path | constant |
+-----------+-------+-------+----------+
| 1 | 3 | 9>7>1 | -0.55 |
| 2 | 3 | 9>7>2 | 2.33 |
| 3 | 3 | 9>7>3 | 1.88 |
| 4 | 3 | 9>8>4 | 1.92 |
| 5 | 3 | 9>8>5 | -2.30 |
| 6 | 2 | 9>6 | -1.02 |
| 7 | 2 | 9>7 | 0.67 |
| 8 | 2 | 9>8 | -0.56 |
| 9 | 1 | 9 | 1.65 |
| intercept | 1 | 9 | -4.67 |
+-----------+-------+-------+----------+
10 rows in set (0.00 sec)
答案 0 :(得分:3)
我不会试图完全围绕你正在做的事情,我同意@RickJames在评论中认为这可能不是数据库的最佳用例。我虽然有点痴迷。我明白了。
我几乎总是在递归CTE中跟踪几件事。
" Path"。如果我要让一个查询停在一个兔子洞,我想知道它是如何到达终点的。所以我跟踪路径,以便知道每次迭代选择了哪个主键。在递归种子(顶部)中,我使用类似SELECT CAST(id as varchar(500)) as path...
的东西,在递归成员(底部)中,我执行recursiveCTE.path + '>' + id as path...
"深度"。我想知道迭代到达结果记录的深度。通过将SELECT 1 as depth
添加到递归种子并将recursiveCTE + 1 as depth
添加到递归成员来跟踪此情况。现在我知道每条记录的深度。
我相信2号将解决您的问题:
WITH RECURSIVE t
AS (
SELECT v.variables,
v.slope,
v.intercept,
1 as depth
FROM variables v
WHERE v.variables = XXXX
UNION ALL
SELECT v.variables,
vhsv.sign * t.slope * v.slope slope,
vhsv.sign * t.slope * v.intercept intercept,
t.depth + 1
FROM t
INNER JOIN variables_has_sub_variables vhsv ON vhsv.variables = t.variables
INNER JOIN variables v ON v.variables = vhsv.sub_variables
)
SELECT variables,
SUM(slope) constant
FROM t
WHERE depth > 1
GROUP BY variables
UNION
SELECT 'intercept' variables,
SUM(intercept) intercept
FROM t;
这里的WHERE子句将限制递归结果集中深度为1的记录,这意味着它们是从递归CTE的递归种子部分引入的(它们是根)。
如果您要求从您的t
CTE的第二个UNION中移除根,则不清楚。如果是这样,则适用相同的逻辑;只需抛出WHERE子句就可以限制depth
1
条记录
虽然这里可能没什么用处,但是PATH
递归cte的示例是:
WITH RECURSIVE t
AS (
SELECT v.variables,
v.slope,
v.intercept,
1 as depth,
CAST(v.variables as CHAR(30)) as path
FROM variables v
WHERE v.variables = XXXX
UNION ALL
SELECT v.variables,
vhsv.sign * t.slope * v.slope slope,
vhsv.sign * t.slope * v.intercept intercept,
t.depth + 1,
CONCAT(t.path,'>', v.variables)
FROM t
INNER JOIN variables_has_sub_variables vhsv ON vhsv.variables = t.variables
INNER JOIN variables v ON v.variables = vhsv.sub_variables
)
SELECT variables,
SUM(slope) constant
FROM t
WHERE depth > 1
GROUP BY variables
UNION
SELECT 'intercept' variables,
SUM(intercept) intercept
FROM t;