此代码呈现两个正态分布:
from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=3)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
plt.show()
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=2)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
plt.show()
如何并排渲染这些发行版?
我尝试过使用子图:
fig, axs = plt.subplots(1,2)
以前的代码变为:
from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np
fig, axs = plt.subplots(1,2)
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=3)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
plt.show()
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=2)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
plt.show()
但是渲染不正确:
如何并排渲染两个或更多的地块?
更新:
根据@Varun Balupuri使用代码回答:
from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=3)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
# plot in the first subplot
plt.subplot(1,2,1)
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
# plot in the second subplot
plt.subplot(1, 2, 2)
plt.plot(x, p, 'k', linewidth=2)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
plt.show()
并排渲染绘图但是重叠,左侧图表中缺少线条,右侧图表中缺少直方图:
答案 0 :(得分:2)
使用fig, axs = plt.subplots(1,2)
的方法是正确的。它会给你一个数字fig
和一系列轴axs
接下来你需要做的是明确地使用那些轴。而不是plt.plot
您只需要axs[0].plot()
来绘制第一个轴,而axs[1].plot()
来绘制第二个轴。 .hist
来电也一样。
最后,您还希望单独为每个子图设置标题,axs[0].set_title(title)
而不是plt.title(title)
。
此外,下面的代码更正了pdf的数据限制,以使用子图的轴限制。
from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np
fig, axs = plt.subplots(1,2, figsize=(5,3))
# first subplot is axs[0]
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
axs[0].hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = axs[0].get_xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
axs[0].plot(x, p, 'k', linewidth=2)
title = "Fit results:\n mu = %.2f,\n std = %.2f" % (mu, std)
axs[0].set_title(title)
# second subplot is axs[1]
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
axs[1].hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = axs[1].get_xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
axs[1].plot(x, p, 'k', linewidth=2)
title = "Fit results:\n mu = %.2f,\n std = %.2f" % (mu, std)
axs[1].set_title(title)
plt.tight_layout()
plt.show()
答案 1 :(得分:0)
您可以使用subplot(nrows, ncols, plot_number),其中使用nrows和ncols将图形概念拆分为nrows * ncols子轴,plot_number用于标识此函数在名义网格中创建的特定子图
在您的情况下,在每个绘图函数之前编写plt.subplot(1,2,1)
和plt.subplot(1, 2, 2)
以指定绘制1行x 2 col网格。第三个参数是您希望绘制的子图。请参阅下面的代码修改:
from scipy.stats import norm
import matplotlib.pyplot as plt
import numpy as np
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=3)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
# plot in the first subplot
plt.subplot(1,2,1)
data = norm.rvs(10.0, 2.5, size=500)
mu, std = norm.fit(data)
plt.hist(data, bins=25, normed=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
# plot in the second subplot
plt.subplot(1, 2, 2)
plt.plot(x, p, 'k', linewidth=2)
title = "Fit results: mu = %.2f, std = %.2f" % (mu, std)
plt.title(title)
fig = plt.gcf()
fig.set_size_inches(4, 3)
plt.show()