我正在由三个节点组成的集群上运行一个spark spark应用程序,每个节点都有一个worker和三个执行器(总共有9个执行器)。我正在使用spark独立模式(版本2.1.1)。
应用程序使用带有选项--deploy-mode client
和--conf spark.streaming.stopGracefullyOnShutdown=true
的spark-submit命令运行。
submit命令从其中一个节点运行,我们称之为节点1.
作为容错测试,我通过调用脚本stop-slave.sh
来停止节点2上的worker。
在节点2的执行程序日志中,我可以看到在随机操作期间与FileNotFoundException相关的几个错误:
ERROR Executor: Exception in task 5.0 in stage 5531241.0 (TID 62488319)
java.io.FileNotFoundException: /opt/spark/spark-31c5b4b0-56e1-45d2-88dc-772b8712833f/executor-0bad0669-57fe-43f9-a77e-1b69cd284523/blockmgr-2aa295ac-78ca-4df6-ab89-51d422e8860e/1c/shuffle_2074211_5_0.index.ecb8e397-c3a3-4c1a-96ba-e153ed92b05c (No such file or directory)
at java.io.FileOutputStream.open(Native Method)
at java.io.FileOutputStream.<init>(FileOutputStream.java:206)
at java.io.FileOutputStream.<init>(FileOutputStream.java:156)
at org.apache.spark.shuffle.IndexShuffleBlockResolver.writeIndexFileAndCommit(IndexShuffleBlockResolver.scala:144)
at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
我可以在节点2的3个执行器中的每一个上看到同一个任务中的4个这类错误。
在驱动程序日志中,我可以看到:
ERROR TaskSetManager: Task 5 in stage 5531241.0 failed 4 times; aborting job
...
ERROR JobScheduler: Error running job streaming job 1503995015000 ms.1
org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 in stage 5531241.0 failed 4 times, most recent failure: Lost task 5.3 in stage 5531241.0 (TID 62488335, 10.7.94.68, executor 2): java.io.FileNotFoundException: /opt/spark/spark-31c5b4b0-56e1-45d2-88dc-772b8712833f/executor-0bad0669-57fe-43f9-a77e-1b69cd284523/blockmgr-2aa295ac-78ca-4df6-ab89-51d422e8860e/1c/shuffle_2074211_5_0.index.9e6148da-6ce2-4de5-94ab-d95db2c8f9f7 (No such file or directory)
这正在按预期取消应用程序:执行程序在单个任务上达到spark.task.maxFailures
,然后应用程序停止。
我运行了不同的测试,所有这些测试都结束了应用停止了。我的想法是,行为可能会有所不同,具体取决于我要求工人停止的流程中的精确步骤。在任何情况下,所有其他测试都失败并出现上述相同的错误。
将参数spark.task.maxFailures
增加到8也没有帮助,因为TaskSetManager信令任务失败了8次而不是4次。
我还运行了另一个测试:我使用命令kill -9
在节点2上杀死了worker和3个执行程序进程。在这种情况下,流媒体应用程序适应剩余资源并继续工作。
在驱动程序日志中,我们可以看到驱动程序注意到缺少的执行程序:
ERROR TaskSchedulerImpl: Lost executor 0 on 10.7.94.68: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
然后,我们注意到长期存在的以下错误:
17/08/29 14:43:19 ERROR ReceiverTracker: Deregistered receiver for stream 5: Error starting receiver 5 - org.jboss.netty.channel.ChannelException: Failed to bind to: /X.X.X.X:40001
at org.jboss.netty.bootstrap.ServerBootstrap.bind(ServerBootstrap.java:272)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:106)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:119)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:74)
at org.apache.avro.ipc.NettyServer.<init>(NettyServer.java:68)
at org.apache.spark.streaming.flume.FlumeReceiver.initServer(FlumeInputDStream.scala:162)
at org.apache.spark.streaming.flume.FlumeReceiver.onStart(FlumeInputDStream.scala:169)
at org.apache.spark.streaming.receiver.ReceiverSupervisor.startReceiver(ReceiverSupervisor.scala:149)
at org.apache.spark.streaming.receiver.ReceiverSupervisor.start(ReceiverSupervisor.scala:131)
at org.apache.spark.streaming.scheduler.ReceiverTracker$ReceiverTrackerEndpoint$$anonfun$9.apply(ReceiverTracker.scala:607)
at org.apache.spark.streaming.scheduler.ReceiverTracker$ReceiverTrackerEndpoint$$anonfun$9.apply(ReceiverTracker.scala:597)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:2028)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:2028)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.BindException: Cannot assign requested address
at sun.nio.ch.Net.bind0(Native Method)
at sun.nio.ch.Net.bind(Net.java:414)
at sun.nio.ch.Net.bind(Net.java:406)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:214)
at sun.nio.ch.ServerSocketAdaptor.bind(ServerSocketAdaptor.java:74)
at org.jboss.netty.channel.socket.nio.NioServerBoss$RegisterTask.run(NioServerBoss.java:193)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.processTaskQueue(AbstractNioSelector.java:372)
at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:296)
at org.jboss.netty.channel.socket.nio.NioServerBoss.run(NioServerBoss.java:42)
... 3 more
此错误会出现在日志中,直到被杀死的工作人员再次启动。
使用专用命令停止工作有一个意外的行为:应用程序应该能够应对错过的工作,适应剩余的资源并继续工作(就像kill
的情况一样)。
您对此问题的看法是什么?
谢谢你, 的Davide