我安装了2个支持Keras v2的GPU GTX1080。我同时在gpu0和gpu1上运行了2个训练过程。但是,我得到了ResourceExhaustedError。
缺少什么?
python multi-gpu-process.py --gpu_id = 1(ok)
python multi-gpu-process.py --gpu_id = 0(ResourceExhaustedError。帮助请。)
# file: multi-gpu-process.py (2 training processes work on different GPUs)
import numpy as np
import os
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
# What GPU is installed.
gpu_list = get_available_gpus()
# Specified gpu installed on machine?
if not '/gpu:' + str(FLAGS.gpu_id) in gpu_list:
raise Exception('This gpu is not installed: /gpu:{}'.format(FLAGS.gpu_id))
# Set GPU in environment.
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' # see issue #152
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu_id)
import keras
from keras.models import Sequential
from keras.layers import Flatten, Dense, Dropout, Activation
from keras.layers.convolutional import Conv2D
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
import tensorflow as tf
from tensorflow.python.client import device_lib
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('gpu_id', 0, """GPU id. Single gpu case.""")
# Use one GPU.
import keras.backend.tensorflow_backend as K # If import and not used, error on session release.
# Solve this error
# https://stackoverflow.com/questions/42969779/keras-error-you-must-feed-a-value-for-placeholder-tensor-bidirectional-1-keras
K.set_learning_phase(1) # set learning phase
# train on specified gpu
with K.tf.device('/gpu:%d' % FLAGS.gpu_id):
K.set_session(K.tf.Session(config=K.tf.ConfigProto(allow_soft_placement=True, # True. Allow to find other device if specified is not available.
log_device_placement=True)))
# To prove running multi process on gpu. Make small model.
model = Sequential()
model.add(Dense(400, input_dim=800, activation='tanh'))
model.add(Dense(200, input_dim=800, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(30, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
print (model.summary())
optimizer = keras.optimizers.Adam(lr=0.0001)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
x = np.random.rand(131072, 800)
y = np.random.randint(0, 2, (131072, 1))
model.fit(x, y, batch_size=2048*4, epochs=1000000)
K.clear_session() # Without it, session error at the end.
==================Not work when starting 2nd process on 2nd GPU (GTX 1080, 8GB)=========================
# Increased model size compared with working version
#
# file: multi-gpu-process_notwork.py
import numpy as np
import os
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
# What GPU is installed.
gpu_list = get_available_gpus()
# Specified gpu installed on machine?
if not '/gpu:' + str(FLAGS.gpu_id) in gpu_list:
raise Exception('This gpu is not installed: /gpu:{}'.format(FLAGS.gpu_id))
# Set GPU in environment.
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' # see issue #152
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu_id)
import keras
from keras.models import Sequential
from keras.layers import Flatten, Dense, Dropout, Activation
from keras.layers.convolutional import Conv2D
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
import tensorflow as tf
from tensorflow.python.client import device_lib
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('gpu_id', 0, """GPU id. Single gpu case.""")
# Use one GPU.
import keras.backend.tensorflow_backend as K # If import and not used, error on session release.
# Solve this error
# https://stackoverflow.com/questions/42969779/keras-error-you-must-feed-a-value-for-placeholder-tensor-bidirectional-1-keras
K.set_learning_phase(1) # set learning phase
# train on specified gpu
with K.tf.device('/gpu:%d' % FLAGS.gpu_id):
K.set_session(K.tf.Session(config=K.tf.ConfigProto(allow_soft_placement=True, # True. Allow to find other device if specified is not available.
log_device_placement=True)))
# To prove running multi process on gpu. Make small model.
model = Sequential()
model.add(Dense(4000, input_dim=8000, activation='tanh'))
model.add(Dense(2000, input_dim=8000, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(30, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
print (model.summary())
optimizer = keras.optimizers.Adam(lr=0.0001)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
x = np.random.rand(131072, 8000)
y = np.random.randint(0, 2, (131072, 1))
model.fit(x, y, batch_size=2048*4, epochs=1000000)
K.clear_session() # Without it, session error at the end.
部分错误:
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[8192,400]
[[Node: gradients/dense_1/Tanh_grad/TanhGrad = TanhGrad[T=DT_FLOAT, _class=["loc:@dense_1/Tanh"], _device="/job:localhost/replica:0/task:0/gpu:0"](dense_1/Tanh, gradients/dense_2/MatMul_grad/MatMul)]]
由于GPU有8GB,因此它与型号无关,而型号相当小。
答案 0 :(得分:1)
您的型号可能很小,但您的批量大小8192可能对您的记忆来说太大了;以64或128的值开始,然后您可以尝试增加它,直到再次出现内存不足(OOM)错误...
编辑:尽管减少批量大小可能会消除错误,但仍然存在两个GPU之间存在差异的问题 - 正如Yu-Yang在评论中正确指出的那样,您应该设置{在导入Keras之前{1}},否则您的Tensorflow后端将占用两个GPU的内存。这样做很可能会消除差异(它也可能让您在没有OOM错误的情况下保持较高的批量)。