我正在尝试用keras创建我的第一个合奏模型。我的数据集中有3个输入值和一个输出值。
from keras.optimizers import SGD,Adam
from keras.layers import Dense,Merge
from keras.models import Sequential
model1 = Sequential()
model1.add(Dense(3, input_dim=3, activation='relu'))
model1.add(Dense(2, activation='relu'))
model1.add(Dense(2, activation='tanh'))
model1.compile(loss='mse', optimizer='Adam', metrics=['accuracy'])
model2 = Sequential()
model2.add(Dense(3, input_dim=3, activation='linear'))
model2.add(Dense(4, activation='tanh'))
model2.add(Dense(3, activation='tanh'))
model2.compile(loss='mse', optimizer='SGD', metrics=['accuracy'])
model3 = Sequential()
model3.add(Merge([model1, model2], mode = 'concat'))
model3.add(Dense(1, activation='sigmoid'))
model3.compile(loss='binary_crossentropy', optimizer='Adam', metrics=['accuracy'])
model3.input_shape
整体模型(model3)编译时没有任何错误,但在拟合模型时,我必须将相同的输入传递两次model3.fit([X,X],y)
。我认为这是一个不必要的步骤,而不是传递输入两次我想为我的整体模型有一个共同的输入节点。我该怎么办?
答案 0 :(得分:5)
Keras functional API似乎更适合您的用例,因为它可以在计算图中提供更大的灵活性。 e.g:
from keras.layers import concatenate
from keras.models import Model
from keras.layers import Input, Merge
from keras.layers.core import Dense
from keras.layers.merge import concatenate
# a single input layer
inputs = Input(shape=(3,))
# model 1
x1 = Dense(3, activation='relu')(inputs)
x1 = Dense(2, activation='relu')(x1)
x1 = Dense(2, activation='tanh')(x1)
# model 2
x2 = Dense(3, activation='linear')(inputs)
x2 = Dense(4, activation='tanh')(x2)
x2 = Dense(3, activation='tanh')(x2)
# merging models
x3 = concatenate([x1, x2])
# output layer
predictions = Dense(1, activation='sigmoid')(x3)
# generate a model from the layers above
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
# Always a good idea to verify it looks as you expect it to
# model.summary()
data = [[1,2,3], [1,1,3], [7,8,9], [5,8,10]]
labels = [0,0,1,1]
# The resulting model can be fit with a single input:
model.fit(data, labels, epochs=50)
注意:
编辑:根据评论更新笔记
答案 1 :(得分:4)
etov的回答是一个很好的选择。
但是假设你已经准备好了model1和model2,并且你不想改变它们,你可以像这样创建第三个模型:
singleInput = Input((3,))
out1 = model1(singleInput)
out2 = model2(singleInput)
#....
#outN = modelN(singleInput)
out = Concatenate()([out1,out2]) #[out1,out2,...,outN]
out = Dense(1, activation='sigmoid')(out)
model3 = Model(singleInput,out)
如果您已准备好所有模型并且不想更改它们,您可以使用此类内容(未经测试):
singleInput = Input((3,))
output = model3([singleInput,singleInput])
singleModel = Model(singleInput,output)
答案 2 :(得分:2)
定义新的输入层并直接使用模型输出(在功能性api中有效):
assert model1.input_shape == model2.input_shape # make sure they got same shape
inp = tf.keras.layers.Input(shape=model1.input_shape[1:])
model = tf.keras.models.Model(inputs=[inp], outputs=[model1(inp), model2(inp)])