我从未成为过三冠王,经过大约4个小时的搜索,我决定在这里问:
我使用Javascript将二次曲线(不是三次贝塞尔曲线)绘制到HTML5 Canvas上,如下所示:
this.shape.moveTo(50,80).curveTo(100,120,40,190);
其中moveTo指定第一个点的x和y,curveTo的前两个参数指定控制点的x和y,curveTo的第3个和第4个参数指定终点的x和y。
我需要创建一个函数,允许我在该曲线上得到任意点t的斜率,如:
function getTangentSlope(P0,P1,P2,t) {
blah blah blah
return slope;
}
到目前为止,我找到的唯一解决方案是带有两个控制点的立方曲线(Find the tangent of a point on a cubic bezier curve (on an iPhone)),或者我不理解符号(https://www.math.usm.edu/lee/mathphysarchive/?p=542)或断开的链接意味着我无法审查整个解决方案(Quadratic Bezier Curve: Calculate Tangent)。
如果斜率以度数给出,那么最好的还是。
兄弟可以帮帮我吗?
答案 0 :(得分:1)
这将返回二阶和三阶曲线的单位位置的归一化切线。
有关下面对象的更多详细用法,请参阅this answer。
foreach ($usrs as $number => $name) {
try{
$sms = $client->account->messages->create(
// the number we are sending to - Any phone number
$number,
array(
// Step 6: Change the 'From' number below to be a valid Twilio number
'from' => "xxxxxxxxxxx",
// the sms body
'body' => "Hey $name. $text"
)
);
// Display a confirmation message on the screen
echo "Sent message to $name <br>";
}
catch (TwilioException $e) {
die( $e->getCode() . ' : ' . $e->getMessage() );
}
}
二阶bezier的用法
const geom = (()=>{
function Vec(x,y){
this.x = x;
this.y = y;
};
function Bezier(p1,p2,cp1,cp2){
this.p1 = p1;
this.p2 = p2;
this.cp1 = cp1;
this.cp2 = cp2;
}
Bezier.prototype = {
//======================================================================================
// single dimension polynomials for 2nd (a,b,c) and 3rd (a,b,c,d) order bezier
//======================================================================================
// for quadratic f(t) = a(1-t)^2+2b(1-t)t+ct^2
// = a+2(-a+b)t+(a-2b+c)t^2
// The derivative f'(t) = 2(1-t)(b-a)+2(c-b)t
//======================================================================================
// for cubic f(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
// = a+(-2a+3b)t+(2a-6b+3c)t^2+(-a+3b-3c+d)t^3
// The derivative f'(t) = -3a(1-t)^2+b(3(1-t)^2-6(1-t)t)+c(6(1-t)t-3t^2) +3dt^2
// The 2nd derivative f"(t) = 6(1-t)(c-2b+a)+6t(d-2c+b)
//======================================================================================
p1 : undefined,
p2 : undefined,
cp1 : undefined,
cp2 : undefined,
tangentAsVec (position, vec ) {
var a, b, c, u;
if (vec === undefined) { vec = new Vec(); }
if (this.cp2 === undefined) {
a = (1-position) * 2;
b = position * 2;
vec.x = a * (this.cp1.x - this.p1.x) + b * (this.p2.x - this.cp1.x);
vec.y = a * (this.cp1.y - this.p1.y) + b * (this.p2.y - this.cp1.y);
}else{
a = (1-position)
b = 6 * a * position; // (6*(1-t)*t)
a *= 3 * a; // 3 * ( 1 - t) ^ 2
c = 3 * position * position; // 3 * t ^ 2
vec.x = -this.p1.x * a + this.cp1.x * (a - b) + this.cp2.x * (b - c) + this.p2.x * c;
vec.y = -this.p1.y * a + this.cp1.y * (a - b) + this.cp2.y * (b - c) + this.p2.y * c;
}
u = Math.sqrt(vec.x * vec.x + vec.y * vec.y);
vec.x /= u;
vec.y /= u;
return vec;
},
}
return { Vec, Bezier,}
})()
三阶贝塞尔的用法
// ? represents any value
var p1 = new geom.Vec(?,?); // start point
var p2 = new geom.Vec(?,?); // end point
var cp1 = new geom.Vec(?,?); //control point
var bez2 = new geom.Bezier(p1,p2,cp1); // create 2nd order bezier
var t = ?;
var tangent = bez2.tangentAsVec(t);
答案 1 :(得分:0)
嗯,我不知道这个功能看起来怎么样,但我知道在哪里可以找到有用的例子:)
前段时间我用图书馆绘制图表。在这个库中,我发现了许多在折线图中绘制线条的函数。图书馆被称为D3。在挖掘代码后,我发现了一个有趣的文件:
https://github.com/d3/d3-shape/tree/master/src/curve
在这里你可以看到你可以得到什么效果:
https://github.com/d3/d3-shape#curves
祝你好运:)