我仍在尝试掌握如何从磁盘恢复已保存的张量流图并通过字典向模型提供。我查看了multiple sources但无法解决此问题。下面的通用MLP代码(第一个代码段)将文件保存到磁盘,但是在恢复(第二个代码段)后,我的准确性返回值无。任何想法可能是什么原因?
# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
# Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
with tf.name_scope('placeholders'):
# tf Graph input
x = tf.placeholder("float", [None, n_input],name='x')
y = tf.placeholder("float", [None, n_classes],name='y')
with tf.name_scope('Layer-1'):
NN_weights_1=tf.Variable(tf.random_normal([n_input, n_hidden_1],seed=1),name='NN_weights_1')
NN_biases_1=tf.Variable(tf.constant(0.0,shape=[n_hidden_1],name='Const'),name='NN_biases_1')
func=tf.add(tf.matmul(x, NN_weights_1,name='matmul'), NN_biases_1,name='Addition')
func_2=tf.nn.relu(func)
with tf.name_scope('Layer-2'):
NN_weights_2=tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2],seed=2),name='NN_weights_2')
NN_biases_2=tf.Variable(tf.constant(0.0,shape=[n_hidden_2],name='Const'),name='NN_biases_2')
func_3=tf.add(tf.matmul(func_2, NN_weights_2,name='matmul'), NN_biases_2,name='Addition')
func_4=tf.nn.relu(func_3)
with tf.name_scope('Output'):
NN_weights_3=tf.Variable(tf.random_normal([n_hidden_2, n_classes],seed=3),name='NN_weights_3')
NN_biases_3=tf.Variable(tf.constant(0.0,shape=[n_classes],name='Const'),name='NN_biases_3')
func_3=tf.add(tf.matmul(func_4, NN_weights_3,name='matmul'), NN_biases_3,name='Addition')
func_4=tf.nn.sigmoid(func_3)
# Define loss and optimizer
with tf.name_scope('Operations_'):
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=func_4, labels=y),name='cost')
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Test model
correct_prediction = tf.equal(tf.argmax(func_4, 1), tf.argmax(y, 1),name='correct_prediction')
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"),name='accuracy')
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
saver = tf.train.Saver()
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print (("Epoch:", '%04d' % (epoch+1), "cost="), \
"{:.9f}".format(avg_cost))
print ("Optimization Finished!")
print ("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
saver.save(sess, 'my_test_model',global_step=1000)
恢复模型并传递字典以确保准确性:
import tensorflow as tf
sess=tf.Session()
#First let's load meta graph and restore weights
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess,"my_test_model-1000")
graph = tf.get_default_graph()
accuracy=graph.get_operation_by_name("Operations_/accuracy")
# Access saved Variables directly
print(sess.run('Layer-1/NN_weights_1:0'))
# This will print 2, which is the value of bias that we saved
print ("Accuracy:", sess.run([accuracy],feed_dict={'placeholders/x:0': mnist.test.images, 'placeholders/y:0': mnist.test.labels}))
答案 0 :(得分:0)
将其更改为:
accuracy=graph.get_operation_by_name("Operations_/accuracy").outputs[0]
Tensorflow会丢弃通过Session.run执行的Operation对象的输出。有关详细说明,请参见此处:TensorFlow: eval restored graph