您好我正在研究 HOG 。
这是我的代码:
% Get labels for each image.
trainingLabels = trainingSet.Labels;
% fitcecoc uses SVM learners and a 'One-vs-One' encoding scheme.
classifier = fitcecoc(trainingFeatures, trainingLabels);
% Extract HOG features from the test set.
The procedure is similar to what % was shown earlier and is encapsulated as a helper function for brevity.
[testFeatures, testLabels] = helperExtractHOGFeaturesFromImageSet(testSet, hogFeatureSize, cellSize);
% Make class predictions using the test features.
predictedLabels = predict(classifier, testFeatures);
helperExtractHOGFeaturesFromImageSet
功能上出现错误,请给我解决方法。感谢
答案 0 :(得分:0)
我知道您一年多以前曾问过这个问题,但是我希望我的回答对将来的用户有所帮助。 如果出现此错误“未定义函数或变量'helperExtractHOGFeaturesFromImageSet'”,这是因为此函数未定义!函数helperExtractHOGFeaturesFromImageSet的代码如下:
function [features, setLabels] = helperExtractHOGFeaturesFromImageSet(imds,
hogFeatureSize, cellSize)
% Extract HOG features from an imageDatastore.
setLabels = imds.Labels;
numImages = numel(imds.Files);
features = zeros(numImages, hogFeatureSize, 'single');
% Process each image and extract features
for j = 1:numImages
img = readimage(imds, j);
img = rgb2gray(img);
% Apply pre-processing steps
img = imbinarize(img);
features(j, :) = extractHOGFeatures(img,'CellSize',cellSize);
end