numpy方法连接两个meshgrids及其结果数组

时间:2017-08-19 07:24:59

标签: python arrays sorting numpy

考虑两个n维,可能重叠,numpy meshgrids,比如说

m1 = (x1, y1, z1, ...)
m2 = (x2, y2, z2, ...)

m1m2内,没有重复的坐标元组。每个meshgrid都有一个结果数组,可能由不同的函数产生:

r1 = f1(m1)
r2 = f2(m2)

这样f1(m) != f2(m)。现在我想加入这两个meshgrids及其结果数组,例如m=m1&m2r=r1&r2(其中&表示某种联合),m中的坐标元组仍然排序,r中的值仍然是for对应于原始坐标元组。新创建的坐标元组应该是可识别的(例如,使用特殊值)。

为了详细说明我所追求的内容,我有两个例子可以用简单的ifx1 = [1, 5, 7] r1 = [i**2 for i in x1] x2 = [2, 4, 6] r2 = [i*3 for i in x2] x,r = list(zip(*sorted([(i,j) for i,j in zip(x1+x2,r1+r2)],key=lambda x: x[0]))) 语句做我想做的事情。这是一个例子:

x = (1, 2, 4, 5, 6, 7)
r = (1, 6, 12, 25, 18, 49)

给出了

import numpy as np
a1 = [1, 5, 7]
b1 = [2, 5, 6]

x1,y1 = np.meshgrid(a1,b1)
r1 = x1*y1

a2 = [2, 4, 6]
b2 = [1, 3, 8]

x2, y2 = np.meshgrid(a2,b2)
r2 = 2*x2

a = [1, 2, 4, 5, 6, 7]
b = [1, 2, 3, 5, 6, 8]

x,y = np.meshgrid(a,b)

r = np.ones(x.shape)*-1

for i in range(x.shape[0]):
    for j in range(x.shape[1]):
        if   x[i,j] in a1 and y[i,j] in b1:
            r[i,j] = r1[a1.index(x[i,j]),b1.index(y[i,j])]

        elif x[i,j] in a2 and y[i,j] in b2:
            r[i,j] = r2[a2.index(x[i,j]),b2.index(y[i,j])]

对于2D,它开始变得非常复杂:

-1

这给出了期望的结果,新的坐标对具有值x= [[1 2 4 5 6 7] [1 2 4 5 6 7] [1 2 4 5 6 7] [1 2 4 5 6 7] [1 2 4 5 6 7] [1 2 4 5 6 7]] y= [[1 1 1 1 1 1] [2 2 2 2 2 2] [3 3 3 3 3 3] [5 5 5 5 5 5] [6 6 6 6 6 6] [8 8 8 8 8 8]] r= [[ -1. 4. 4. -1. 4. -1.] [ 2. -1. -1. 5. -1. 6.] [ -1. 8. 8. -1. 8. -1.] [ 10. -1. -1. 25. -1. 30.] [ 14. -1. -1. 35. -1. 42.] [ -1. 12. 12. -1. 12. -1.]]

numpy

但随着尺寸和阵列尺寸的增加,这也会变得很慢。最后,问题是:如何仅使用python函数来完成此操作。如果不可能,那么在{{1}}中实现这一点的最快方法是什么。如果它无论如何相关,我更喜欢使用Python 3.请注意,我在示例中使用的函数不是我使用的实际函数。

2 个答案:

答案 0 :(得分:1)

我们可以使用一些遮罩来替换A in B部分,以便为我们提供1D个遮罩。然后,我们可以使用np.ix_的面具扩展到所需的维度数。

因此,对于2D案例,它将是这些行 -

# Initialize o/p array
r_out = np.full([len(a), len(b)],-1)           

# Assign for the IF part
mask_a1 = np.in1d(a,a1)
mask_b1 = np.in1d(b,b1)
r_out[np.ix_(mask_b1, mask_a1)] = r1.T

# Assign for the ELIF part
mask_a2 = np.in1d(a,a2)
mask_b2 = np.in1d(b,b2)
r_out[np.ix_(mask_b2, mask_a2)] = r2.T
可以创建

a,如此 -

a = np.concatenate((a1,a2))
a.sort()

同样,b

此外,我们可以使用索引而不是掩码来与np.ix_一起使用。同样,我们可以使用np.searchsorted。因此,代替掩码np.in1d(a,a1),我们可以获得np.searchsorted(a,a1)的相应索引,依此类推其他掩码。这应该快得多。

对于3D的情况,我会假设我们会有另一个数组,比如c。因此,初始化部分将涉及使用len(c)。还有一个掩码/索引数组对应c,因此还有一个术语进入np.ix_,并且会有r1r2的转置。

答案 1 :(得分:1)

Divakar的回答正是我所需要的。但是,我想在那个答案中尝试第二个建议,最后我做了一些分析。我认为结果可能对其他人有意思。这是我用于分析的代码:

import numpy as np
import timeit
import random

def for_join_2d(x1,y1,r1, x2,y2,r2):
    """
    The algorithm from the question.
    """

    a = sorted(list(x1[0,:])+list(x2[0,:]))
    b = sorted(list(y1[:,0])+list(y2[:,0]))

    x,y = np.meshgrid(a,b)
    r = np.ones(x.shape)*-1

    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            if   x[i,j] in a1 and y[i,j] in b1:
                r[i,j] = r1[a1.index(x[i,j]),b1.index(y[i,j])]

            elif x[i,j] in a2 and y[i,j] in b2:
                r[i,j] = r2[a2.index(x[i,j]),b2.index(y[i,j])]
    return x,y,r


def mask_join_2d(x1,y1,r1,x2,y2,r2):
    """
    Divakar's original answer.
    """
    a = np.sort(np.concatenate((x1[0,:],x2[0,:])))
    b = np.sort(np.concatenate((y1[:,0],y2[:,0])))

    # Initialize o/p array
    x,y = np.meshgrid(a,b)
    r_out = np.full([len(a), len(b)],-1)           

    # Assign for the IF part
    mask_a1 = np.in1d(a,a1)
    mask_b1 = np.in1d(b,b1)
    r_out[np.ix_(mask_b1, mask_a1)] = r1.T

    # Assign for the ELIF part
    mask_a2 = np.in1d(a,a2)
    mask_b2 = np.in1d(b,b2)
    r_out[np.ix_(mask_b2, mask_a2)] = r2.T

    return x,y,r_out


def searchsort_join_2d(x1,y1,r1,x2,y2,r2):
    """
    Divakar's second suggested solution using searchsort.
    """

    a = np.sort(np.concatenate((x1[0,:],x2[0,:])))
    b = np.sort(np.concatenate((y1[:,0],y2[:,0])))

    # Initialize o/p array
    x,y = np.meshgrid(a,b)
    r_out = np.full([len(a), len(b)],-1)           

    #the IF part
    ind_a1 = np.searchsorted(a,a1)
    ind_b1 = np.searchsorted(b,b1)
    r_out[np.ix_(ind_b1,ind_a1)] = r1.T

    #the ELIF part
    ind_a2 = np.searchsorted(a,a2)
    ind_b2 = np.searchsorted(b,b2)
    r_out[np.ix_(ind_b2,ind_a2)] = r2.T

    return x,y,r_out

##the profiling code:
if __name__ == '__main__':

    N1 = 100
    N2 = 100

    coords_a = [i for i in range(N1)]
    coords_b = [i*2 for i in range(N2)]

    a1 = random.sample(coords_a, N1//2)
    b1 = random.sample(coords_b, N2//2)

    a2 = [i for i in coords_a if i not in a1]
    b2 = [i for i in coords_b if i not in b1]

    x1,y1 = np.meshgrid(a1,b1)
    r1 = x1*y1
    x2,y2 = np.meshgrid(a2,b2)
    r2 = 2*x2

    print("original for loop")
    print(min(timeit.Timer(
        'for_join_2d(x1,y1,r1,x2,y2,r2)',
        setup = 'from __main__ import for_join_2d,x1,y1,r1,x2,y2,r2',
    ).repeat(7,1000)))

    print("with masks")
    print(min(timeit.Timer(
        'mask_join_2d(x1,y1,r1,x2,y2,r2)',
        setup = 'from __main__ import mask_join_2d,x1,y1,r1,x2,y2,r2',
    ).repeat(7,1000)))

    print("with searchsort")
    print(min(timeit.Timer(
        'searchsort_join_2d(x1,y1,r1,x2,y2,r2)',
        setup = 'from __main__ import searchsort_join_2d,x1,y1,r1,x2,y2,r2',
    ).repeat(7,1000)))

对于每个函数,我使用了7组1000次迭代并选择了最快的评估集。两个10x10阵列的结果是:

original for loop
0.5114614190533757

with masks
0.21544912096578628

with searchsort
0.12026709201745689

对于两个100x100阵列,它是:

original for loop
247.88183582702186

with masks
0.5245905339252204

with searchsort
0.2439237720100209

对于大型矩阵,numpy功能的使用毫不奇怪地产生了巨大的差异,实际上searchsort并且索引而不是掩盖运行时间的一半。