我重复使用TensorFlow代码进行多变量线性回归并尝试降低成本,但问题是在经过一些迭代之后,成本以及W和b的值变为inf并快速为nan。有人可以告诉我问题出在哪里。 我有大约100,000个值。我已将其修剪为10,000个值进行测试。 数据集为here
这是代码
import numpy as np
import tensorflow as tf
def computeX():
all_xs = np.loadtxt("test.csv", delimiter=',', skiprows=1, usecols=range(4,260)) #reads the columns except first one
timestamps = np.loadtxt("test.csv", delimiter=',', skiprows=1, usecols=(0),dtype =str)
symbols = np.loadtxt("test.csv", delimiter=',', skiprows=1, usecols=(1),dtype =float)
categories = np.loadtxt("test.csv", delimiter=',', skiprows=1, usecols=(2),dtype =str)
tempList = []
BOW = {"M1": 1.0, "M5": 2.0, "M15": 3.0, "M30": 4.0, "H1": 5.0, "H4": 6.0, "D1": 7.0}
#explode dates and make them features.. 2016/11/1 01:54 becomes [2016, 11, 1, 01, 54]
for i, v in enumerate(timestamps):
splitted = v.split()
dateVal = splitted[0]
timeVal = splitted[1]
ar = dateVal.split("/")
splittedTime = timeVal.split(":")
ar = ar + splittedTime
Features = np.asarray(ar)
Features = Features.astype(float)
# append symbols
Features = np.append(Features,symbols[i])
#append categories from BOW
Features = np.append(Features, BOW[categories[i]] )
row = np.append(Features,all_xs[i])
row = row.tolist()
tempList.append(row)
all_xs = np.array(tempList)
del tempList[:]
return all_xs
if __name__ == "__main__":
print ("Starting....")
learn_rate = 0.5
all_ys = np.loadtxt("test.csv", delimiter=',', skiprows=1, usecols=3)
#reads only first column
all_xs = computeX()
datapoint_size= int(all_xs.shape[0])
print(datapoint_size)
x = tf.placeholder(tf.float32, [None, 263], name="x")
W = tf.Variable(tf.ones([263,1]), name="W")
b = tf.Variable(tf.ones([1]), name="b")
product = tf.matmul(x,W)
y = product + b
y_ = tf.placeholder(tf.float32, [datapoint_size])
cost = tf.reduce_mean(tf.square(y_-y))/ (2*datapoint_size)
train_step = tf.train.GradientDescentOptimizer(learn_rate).minimize(cost)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
batch_size = 10000
steps =10
for i in range(steps):
print("Entering Loop")
if datapoint_size == batch_size:
batch_start_idx = 0
elif datapoint_size < batch_size:
raise ValueError("datapoint_size: %d, must be greater than batch_size: %d" % (datapoint_size, batch_size))
else:
batch_start_idx = (i * batch_size) % (datapoint_size - batch_size)
batch_end_idx = batch_start_idx + batch_size
batch_xs = all_xs[batch_start_idx:batch_end_idx]
batch_ys = all_ys[batch_start_idx:batch_end_idx]
xs = np.array(batch_xs)
ys = np.array(batch_ys)
feed = { x: xs, y_: ys }
sess.run(train_step, feed_dict=feed)
print("W: %s" % sess.run(W))
print("b: %f" % sess.run(b))
print("cost: %f" % sess.run(cost, feed_dict=feed))
答案 0 :(得分:0)
查看您的数据:
id8 id9 id10 id11 id12
1451865600 1451865600 -19.8 87.1 0.5701
1451865600 1451865600 -1.6 3.6 0.57192
1451865600 1451865600 -5.3 23.9 0.57155
您还将权重初始化为1,如果将所有输入数据与1相乘,并将它们相加,则所有“重”列(id8,id9等具有大数字的列)将从中推出数据较小的列)。您还有一些用零填充的列:
id236 id237 id238 id239 id240
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
这些都是一起玩不好的东西。较大的值将导致非常高的预测,这些将导致损失爆炸和溢出。即使将学习率降低10倍也几乎没有任何影响。
因此建议: