数据位于以下链接:http://www.fdic.gov/bank/individual/failed/banklist.html
我只想要在2017年关闭的银行。我怎么能在熊猫中做到这一点?
failed_banks= pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')
failed_banks[0]
在这些代码行之后我应该怎么做以提取所需的结果?
答案 0 :(得分:0)
理想情况下,您会使用
# assuming pandas successfully parsed this column as datetime object
# and pandas version >= 0.16
failed_banks= pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')[0]
failed_banks = failed_banks[failed_banks['Closing Date'].dt.year == 2017]
但是大熊猫没有正确地将Closing Date
解析为日期对象,所以我们需要自己解析它:
failed_banks = pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')[0]
def parse_date_strings(date_str):
return int(date_str.split(', ')[-1]) == 2017
failed_banks = failed_banks[failed_banks['Closing Date'].apply(parse_date_strings)]
答案 1 :(得分:0)
这样的事情应该有效
提取结束年份。
# using pd.to_datetime
closing_year = pd.to_datetime(failed_banks[0]['Updated Date']).apply(lambda x: x.year)
# or by splitting the line
closing_year = failed_banks[0]['Updated Date'].apply(lambda x: x.split(', ')[1])
然后选择。
failed_banks[0][closing_year=='2017']