我为一个" 2d活跃的模型"写了一个蒙特卡罗模拟。我试图改善运行时间。
我的代码做了什么: 我为粒子数(r)创建了一个矩阵,为每个点(rgrid和mgrid)创建了一个磁化强度矩阵。颗粒的自旋可以是-1/1,因此磁化范围为[-r,r],步长为2.
然后选择随机点和随机粒子(+1或-1)。因为概率取决于每个地方的正/负粒子的数量,所以我创建2个阵列并压缩它们,这样我就能得到正粒子的拟合数,即[(-3,0),(-1,1),( 1,2),(3,3)]。 对于3个粒子,我可以得到(-3,-1,1,3)的磁化,其具有(0,1,2,3)+1个粒子。
之后我计算了该点的概率并选择了一个动作:spinflip,向上/向下跳跃,向左/向右跳跃,什么也不做。 现在我必须移动粒子(或不移动)并更改2个点的磁体/密度(并检查周期性边界条件)。
这是我的代码:
from __future__ import print_function
from __future__ import division
from datetime import datetime
import numpy as np
import math
import matplotlib.pyplot as plt
import cProfile
pr = cProfile.Profile()
pr.enable()
m = 10 # zeilen, spalten
j = 1000 # finale zeit
r = 3 # platzdichte
b = 1.6 # beta
e = 0.9 # epsilon
M = m * m # platzanzahl
N = M * r # teilchenanzahl
dt = 1 / (4 * np.exp(b)) # delta-t
i = 0
rgrid = r * np.ones((m, m)).astype(int) # dichte-matrix, rho = n(+) + n(-)
magrange = np.arange(-r, r + 1, 2) # mögliche magnetisierungen [a, b), schrittweite
mgrid = np.random.choice(magrange, (m, m)) # magnetisierungs-matrix m = n(+) - (n-)
def flip():
mgrid[math.trunc(x / m), x % m] -= 2 * spin
def up():
y = x - m
if y < 0: # periodische randbedingung hoch
y += m * m
x1 = math.trunc(x / m)
x2 = x % m
y1 = math.trunc(y / m)
y2 = y % m
rgrid[x1, x2] -= 1 # [zeile, spalte] masse -1
rgrid[y1, y2] += 1 # [zeile, spalte] masse +1
mgrid[x1, x2] -= spin # [zeile, spalte] spinänderung alter platz
mgrid[y1, y2] += spin # [zeile, spalte] spinänderung neuer platz
def down():
y = x + m
if y >= m * m: # periodische randbedingung unten
y -= m * m
x1 = math.trunc(x / m)
x2 = x % m
y1 = math.trunc(y / m)
y2 = y % m
rgrid[x1, x2] -= 1
rgrid[y1, y2] += 1
mgrid[x1, x2] -= spin
mgrid[y1, y2] += spin
def left():
y = x - 1
if math.trunc(y / m) < math.trunc(x / m): # periodische randbedingung links
y += m
x1 = math.trunc(x / m)
x2 = x % m
y1 = math.trunc(y / m)
y2 = y % m
rgrid[x1, x2] -= 1
rgrid[y1, y2] += 1
mgrid[x1, x2] -= spin
mgrid[y1, y2] += spin
def right():
y = x + 1
if math.trunc(y / m) > math.trunc(x / m): # periodische randbedingung rechts
y -= m
x1 = math.trunc(x / m)
x2 = x % m
y1 = math.trunc(y / m)
y2 = y % m
rgrid[x1, x2] -= 1
rgrid[y1, y2] += 1
mgrid[x1, x2] -= spin
mgrid[y1, y2] += spin
while i < j:
# 1. platz aussuchen
x = np.random.randint(M) # wähle zufälligen platz aus
if rgrid.item(x) != 0:
i += dt / N
# 2. teilchen aussuchen
li1 = np.arange(-abs(rgrid.item(x)), abs(rgrid.item(x)) + 1, 2)
li2 = np.arange(0, abs(rgrid.item(x)) + 1)
li3 = zip(li1, li2) # list1 und list2 als tupel in list3
results = [item[1] for item in li3 if item[0] == mgrid.item(x)] # gebe 2. element von tupel aus für passende magnetisierung
num = int(''.join(map(str, results))) # wandle listeneintrag in int um
spin = 1.0 if np.random.random() < num / rgrid.item(x) else -1.0
# 3. ereignis aussuchen
p = np.random.random()
p1 = np.exp(- spin * b * mgrid.item(x) / rgrid.item(x)) * dt # flip
p2 = dt # hoch
p3 = dt # runter
p4 = (1 - spin * e) * dt # links
p5 = (1 + spin * e) * dt # rechts
p6 = 1 - (4 + p1) * dt # nichts
if p < p6:
continue
elif p < p6 + p1:
flip()
continue
elif p < p6 + p1 + p2:
up()
continue
elif p < p6 + p1 + p2 + p3:
down()
continue
elif p < p6 + p1 + p2 + p3 + p4:
left()
continue
else:
right()
continue
pr.disable()
pr.print_stats(sort='cumtime')
我已经做了什么来加快速度:
import pyximport; pyximport.install()
创建了一个已编译的cython文件。这没有任何改进,在检查cython -a script.py
后我发现我需要更多的静态变量来获得一些改进。现在正在运行cProfile
告诉我:
188939207 function calls in 151.834 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
5943639 10.582 0.000 40.678 0.000 {method 'join' of 'str' objects}
5943639 32.543 0.000 37.503 0.000 script.py:107(<listcomp>)
5943639 4.722 0.000 30.096 0.000 numeric.py:1905(array_str)
8276949 25.852 0.000 25.852 0.000 {method 'randint' of 'mtrand.RandomState' objects}
5943639 11.855 0.000 25.374 0.000 arrayprint.py:381(wrapper)
11887279 14.403 0.000 14.403 0.000 {built-in method numpy.core.multiarray.arange}
80651998 13.559 0.000 13.559 0.000 {method 'item' of 'numpy.ndarray' objects}
5943639 8.427 0.000 9.364 0.000 arrayprint.py:399(array2string)
11887278 8.817 0.000 8.817 0.000 {method 'random_sample' of 'mtrand.RandomState' objects}
579016 7.351 0.000 7.866 0.000 script.py:79(right)
300021 3.669 0.000 3.840 0.000 script.py:40(up)
152838 1.950 0.000 2.086 0.000 script.py:66(left)
17830917 1.910 0.000 1.910 0.000 {built-in method builtins.abs}
176346 1.147 0.000 1.217 0.000 script.py:37(flip)
5943639 1.131 0.000 1.131 0.000 {method 'discard' of 'set' objects}
5943639 1.054 0.000 1.054 0.000 {built-in method _thread.get_ident}
5943639 1.010 0.000 1.010 0.000 {method 'add' of 'set' objects}
5943639 0.961 0.000 0.961 0.000 {built-in method builtins.id}
3703804 0.892 0.000 0.892 0.000 {built-in method math.trunc}
我使用join
来获取该点上+1粒子数的整数值,因为我的概率需要它。
如果我想运行像m=400
,r=3
,j=300000
(j:最后一次)那样严肃的事情,那我用目前的速度查看大约4年的运行时间
非常感谢任何帮助。
答案 0 :(得分:1)
蒙特卡罗模拟
起初我摆脱了这些列表,之后我使用了一个及时编译器(numba)。没有编译得到196s(你的版本),编译我得到0.44s。因此,通过使用jit-compiler和一些简单的优化,可以改善因子 435 。
另一个主要优点是GIL(全局解释器锁)也在这里发布。如果代码受处理器限制且不受存储器带宽的限制,则可以在另一个线程中计算随机数,同时在另一个线程中运行模拟(可以使用多个核心)。这也可以进一步提高性能,并且可以如下工作:
<强>代码强>
import numba as nb
import numpy as np
def calc (m,j,e,r,dt,b,rgrid,mgrid):
M=m*m
N = M * r
i=0
while i < j:
# 1. platz aussuchen
x = np.random.randint(M) # wähle zufälligen platz aus
if rgrid[x] != 0:
i += dt / N
########
# 2. teilchen aussuchen
#li1 = np.arange(-abs(rgrid[x]), abs(rgrid[x]) + 1, 2)
#li2 = np.arange(0, abs(rgrid[x]) + 1)
#li3 = zip(li1, li2) # list1 und list2 als tupel in list3
#results = [item[1] for item in li3 if item[0] == mgrid[x]] # gebe 2. element von tupel aus für passende magnetisierung
#num = int(''.join(map(str, results))) # wandle listeneintrag in int um
#######
# This should be equivalent
jj=0 #li2 starts with 0 and has a increment of 1
for ii in range(-abs(rgrid[x]),abs(rgrid[x])+1, 2):
if (ii==mgrid[x]):
num=jj
break
jj+=1
spin = 1.0 if np.random.random() < num / rgrid[x] else -1.0
# 3. ereignis aussuchen
p = np.random.random()
p1 = np.exp(- spin * b * mgrid[x] / rgrid[x]) * dt # flip
p2 = dt # hoch
p3 = dt # runter
p4 = (1 - spin * e) * dt # links
p5 = (1 + spin * e) * dt # rechts
p6 = 1 - (4 + p1) * dt # nichts
if p < p6:
continue
elif p < p6 + p1:
#flip()
mgrid[x] -= 2 * spin
continue
elif p < p6 + p1 + p2:
#up()
y = x - m
if y < 0: # periodische randbedingung hoch
y += m * m
rgrid[x] -= 1 # [zeile, spalte] masse -1
rgrid[y] += 1 # [zeile, spalte] masse +1
mgrid[x] -= spin # [zeile, spalte] spinänderung alter platz
mgrid[y] += spin # [zeile, spalte] spinänderung neuer platz
continue
elif p < p6 + p1 + p2:
#down()
y = x + m
if y >= m * m: # periodische randbedingung unten
y -= m * m
rgrid[x] -= 1
rgrid[y] += 1
mgrid[x] -= spin
mgrid[y] += spin
continue
elif p < p6 + p2 + p3:
#left()
y = x - 1
if (y // m) < (x // m): # periodische randbedingung links
y += m
rgrid[x] -= 1
rgrid[y] += 1
mgrid[x] -= spin
mgrid[y] += spin
continue
else:
#right()
y = x + 1
if (y // m) > (x // m): # periodische randbedingung rechts
y -= m
rgrid[x] -= 1
rgrid[y] += 1
mgrid[x] -= spin
mgrid[y] += spin
continue
return (mgrid,rgrid)
现在测试的主要功能是:
def main():
m = 10 # zeilen, spalten
j = 1000 # finale zeit
r = 3 # platzdichte
b = 1.6 # beta
e = 0.9 # epsilon
M = m * m # platzanzahl
N = M * r # teilchenanzahl
dt = 1 / (4 * np.exp(b)) # delta-t
i = 0
rgrid = r * np.ones((m, m),dtype=np.int) #don't convert the array build it up with the right datatype # dichte-matrix, rho = n(+) + n(-)
magrange = np.arange(-r, r + 1, 2) # mögliche magnetisierungen [a, b), schrittweite
mgrid = np.random.choice(magrange, (m, m)) # magnetisierungs-matrix m = n(+) - (n-)
#Compile the function
nb_calc = nb.njit(nb.types.Tuple((nb.int32[:], nb.int32[:]))(nb.int32, nb.int32,nb.float32,nb.int32,nb.float32,nb.float32,nb.int32[:], nb.int32[:]),nogil=True)(calc)
Results=nb_calc(m,j,e,r,dt,b,rgrid.flatten(),mgrid.flatten())
#Get the results
mgrid_new=Results[0].reshape(mgrid.shape)
rgrid_new=Results[1].reshape(rgrid.shape)
修改强> 我重写了代码“2.Teilchen aussuchen”并重新编写代码,以便它与标量索引一起使用。这使得额外的速度提高了4倍。