我有像这样的scala代码
def avgCalc(buffer: Iterable[Array[String]], list: Array[String]) = {
val currentTimeStamp = list(1).toLong // loads the timestamp column
var sum = 0.0
var count = 0
var check = false
import scala.util.control.Breaks._
breakable {
for (array <- buffer) {
val toCheckTimeStamp = array(1).toLong // timestamp column
if (((currentTimeStamp - 10L) <= toCheckTimeStamp) && (currentTimeStamp >= toCheckTimeStamp)) { // to check the timestamp for 10 seconds difference
sum += array(5).toDouble // RSSI weightage values
count += 1
}
if ((currentTimeStamp - 10L) > toCheckTimeStamp) {
check = true
break
}
}
}
list :+ sum
}
我会像这样调用上面的函数
import spark.implicits._
val averageDF =
filterop.rdd.map(_.mkString(",")).map(line => line.split(",").map(_.trim))
.sortBy(array => array(1), false) // Sort by timestamp
.groupBy(array => (array(0), array(2))) // group by tag and listner
.mapValues(buffer => {
buffer.map(list => {
avgCalc(buffer, list) // calling the average function
})
})
.flatMap(x => x._2)
.map(x => findingavg(x(0).toString, x(1).toString.toLong, x(2).toString, x(3).toString, x(4).toString, x(5).toString.toDouble, x(6).toString.toDouble)) // defining the schema through case class
.toDF // converting to data frame
上面的代码工作正常。但我需要摆脱列表。我的高级要求我删除列表,因为列表降低了执行速度。任何建议继续没有列表? 任何帮助将不胜感激。
答案 0 :(得分:4)
以下解决方案应该可行,我想,我试图避免传递iterable和一个数组。
def avgCalc(buffer: Iterable[Array[String]]) = {
var finalArray = Array.empty[Array[String]]
import scala.util.control.Breaks._
breakable {
for (outerArray <- buffer) {
val currentTimeStamp = outerArray(1).toLong
var sum = 0.0
var count = 0
var check = false
var list = outerArray
for (array <- buffer) {
val toCheckTimeStamp = array(1).toLong
if (((currentTimeStamp - 10L) <= toCheckTimeStamp) && (currentTimeStamp >= toCheckTimeStamp)) {
sum += array(5).toDouble
count += 1
}
if ((currentTimeStamp - 10L) > toCheckTimeStamp) {
check = true
break
}
}
if (sum != 0.0 && check) list = list :+ (sum / count).toString
else list = list :+ list(5).toDouble.toString
finalArray ++= Array(list)
}
}
finalArray
}
你可以称之为
import sqlContext.implicits._
val averageDF =
filter_op.rdd.map(_.mkString(",")).map(line => line.split(",").map(_.trim))
.sortBy(array => array(1), false)
.groupBy(array => (array(0), array(2)))
.mapValues(buffer => {
avgCalc(buffer)
})
.flatMap(x => x._2)
.map(x => findingavg(x(0).toString, x(1).toString.toLong, x(2).toString, x(3).toString, x(4).toString, x(5).toString.toDouble, x(6).toString.toDouble))
.toDF
我希望这是理想的答案
答案 1 :(得分:1)
我可以看到你已经接受了答案,但我不得不说你有很多不必要的代码。据我所知,您没有理由首先将Array
类型初始转换为sortBy
类型,此时Row
也是不必要的。我建议你直接在toDF
上工作。
此外,您还有许多未使用的变量应该被移除并转换为案例类,只有import org.apache.spark.sql.Row
def avgCalc(sortedList: List[Row]) = {
sortedList.indices.map(i => {
var sum = 0.0
val row = sortedList(i)
val currentTimeStamp = row.getString(1).toLong // loads the timestamp column
import scala.util.control.Breaks._
breakable {
for (j <- 0 until sortedList.length) {
if (j != i) {
val anotherRow = sortedList(j)
val toCheckTimeStamp = anotherRow.getString(1).toLong // timestamp column
if (((currentTimeStamp - 10L) <= toCheckTimeStamp) && (currentTimeStamp >= toCheckTimeStamp)) { // to check the timestamp for 10 seconds difference
sum += anotherRow.getString(5).toDouble // RSSI weightage values
}
if ((currentTimeStamp - 10L) > toCheckTimeStamp) {
break
}
}
}
}
(row.getString(0), row.getString(1), row.getString(2), row.getString(3), row.getString(4), row.getString(5), sum.toString)
})
}
val averageDF = filterop.rdd
.groupBy(row => (row(0), row(2)))
.flatMap{case(_,buffer) => avgCalc(buffer.toList.sortBy(_.getString(1).toLong))}
.toDF("Tag", "Timestamp", "Listner", "X", "Y", "RSSI", "AvgCalc")
似乎过度恕我直言。
我会做这样的事情:
avgCalc
作为最终评论,我非常确定能够更好/更清晰地实现data = ["/example/path1", "/example/path2" ]
功能,但我会留给您玩弄那个:))