如何在matplotlib的Colormap中解码颜色映射?

时间:2017-07-18 21:11:11

标签: python matplotlib colormap

我知道如何将数字映射到此帖子中的颜色:Map values to colors in matplotlib

但我不知道如何解码映射以获得我的原始颜色,假设这是一对一的映射,它必须是我的数字。

我正在为可视化目的编码图像,但我需要能够对其进行解码并读取原始数据值。

供参考,以下是Colormap文档:http://matplotlib.org/api/cm_api.html

这是我尝试下面的主要答案,但仍然无法正常工作。

from PIL import Image
import numpy as np
import matplotlib
import matplotlib.cm as cm
values = [670, 894, 582, 103, 786, 348, 972, 718, 356, 692]
minima = 103
maxima = 972
norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.gist_rainbow_r)
c = []
for i in range(10):
    c.append(mapper.to_rgba(values[i], bytes=True))
print(c) # [(75, 255, 0, 255), (255, 77, 0, 255), (0, 255, 64, 255), (255, 0, 191, 255), (255, 250, 0, 255), (0, 72, 255, 255), (255, 0, 40, 255), (151, 255, 0, 255), (0, 83, 255, 255), (108, 255, 0, 255)]

def get_value_from_cm(color, cmap, colrange):
    # color = matplotlib.colors.to_rgba(color)
    r = np.linspace(colrange[0], colrange[1], 10) # there are 10 values
    norm = matplotlib.colors.Normalize(colrange[0], colrange[1])
    mapvals = cmap(norm(r))[:, :4] # there are 4 channels: r,g,b,a
    distance = np.sum((mapvals - color) ** 2, axis=1)
    return r[np.argmin(distance)]

decoded_colors = []
for i in range(10):
    decoded_colors.append(get_value_from_cm(c[i], cm.gist_rainbow_r, colrange=[minima, maxima]))
print(decoded_colors) # [778.88888888888891, 778.88888888888891, 489.22222222222223, 103.0, 778.88888888888891, 392.66666666666669, 103.0, 778.88888888888891, 392.66666666666669, 778.88888888888891]

1 个答案:

答案 0 :(得分:3)

如果是,则可以反转颜色映射 (a)您知道它所映射的数据范围和
(b)如果您知道已使用的色彩图,并且
(c)如果色图是明确的。

以下函数将返回给定颜色,色彩映射以及使用色彩映射的范围的值。

import numpy as np
import matplotlib.colors
import matplotlib.pyplot as plt

def get_value_from_cm(color, cmap, colrange=[0.,1.]):
    color=matplotlib.colors.to_rgb(color)
    r = np.linspace(colrange[0],colrange[1], 256)
    norm = matplotlib.colors.Normalize(colrange[0],colrange[1])
    mapvals = cmap(norm(r))[:,:3]
    distance = np.sum((mapvals - color)**2, axis=1)
    return r[np.argmin(distance)]


b = get_value_from_cm(plt.cm.coolwarm(0.5), plt.cm.coolwarm, [0.,1.])
c = get_value_from_cm(np.array([1,0,0]), plt.cm.coolwarm)

print b                   # 0.501960784314
print plt.cm.coolwarm(b)
# (0.86742763508627452, 0.86437659977254899, 0.86260246201960789, 1.0)
print plt.cm.coolwarm(0.5)
#(0.86742763508627452, 0.86437659977254899, 0.86260246201960789, 1.0)

请注意,此方法涉及错误,因此您只能从色彩映射中获取最接近的值,而不是最初用于从地图创建颜色的值。

在问题的更新代码中,您为每个通道定义了0到255之间的整数颜色。因此,您需要首先将它们映射到0到1的范围。

from PIL import Image
import numpy as np
import matplotlib
import matplotlib.cm as cm
values = [670, 894, 582, 103, 786, 348, 972, 718, 356, 692]
minima = 103
maxima = 972
norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.gist_rainbow_r)
c = []
for i in range(10):
    c.append(mapper.to_rgba(values[i], bytes=True))
print(c) # [(75, 255, 0, 255), (255, 77, 0, 255), (0, 255, 64, 255), (255, 0, 191, 255), (255, 250, 0, 255), (0, 72, 255, 255), (255, 0, 40, 255), (151, 255, 0, 255), (0, 83, 255, 255), (108, 255, 0, 255)]

def get_value_from_cm(color, cmap, colrange):
    color = np.array(color)/255. 
    r = np.linspace(colrange[0], colrange[1], 256) 
    norm = matplotlib.colors.Normalize(colrange[0], colrange[1])
    mapvals = cmap(norm(r))[:, :4] # there are 4 channels: r,g,b,a
    distance = np.sum((mapvals - color) ** 2, axis=1)
    return r[np.argmin(distance)]

decoded_colors = []
for i in range(10):
    decoded_colors.append(get_value_from_cm(c[i], cm.gist_rainbow_r, colrange=[minima, maxima]))
print(decoded_colors)