工作示例:
import numpy as np
import tensorflow as tf
## construct data
np.random.seed(723888)
N,P = 50,3 # number and dimensionality of observations
Xbase = np.random.multivariate_normal(mean=np.zeros((P,)), cov=np.eye(P), size=N)
## construct model
X = tf.placeholder(dtype=tf.float32, shape=(None, P), name='X')
mu = tf.Variable(np.random.normal(loc=0.0, scale=0.1, size=(P,)), dtype=tf.float32, name='mu')
xDist = tf.contrib.distributions.MultivariateNormalDiag(loc=mu, scale_diag=tf.ones(shape=(P,), dtype=tf.float32), name='xDist')
xProbs = xDist.prob(X, name='xProbs')
## prepare optimizer
eta = 1e-3 # learning rate
loss = -tf.reduce_mean(tf.log(xProbs), name='loss')
optimizer = tf.train.AdamOptimizer(learning_rate=eta).minimize(loss)
## launch session
with tf.Session() as sess:
tf.global_variables_initializer().run()
sess.run(optimizer, feed_dict={X: Xbase})
我想对张量流中多元高斯分布的参数进行优化,如上例所示。我可以成功运行像sess.run(loss, feed_dict={X: Xbase})
这样的命令,所以我已经正确地实现了分发。当我尝试运行优化操作时,我收到一条奇怪的错误消息:
InvalidArgumentError: -1 is not between 0 and 3
[[Node: gradients_1/xDist_7/xProbs/Prod_grad/InvertPermutation = InvertPermutation[T=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](gradients_1/xDist_7/xProbs/Prod_grad/concat)]]
Caused by op 'gradients_1/xDist_7/xProbs/Prod_grad/InvertPermutation'
我不明白。
如果我使用tf.contrib.distributions.MultivariateNormalFullCovariance
而不是tf.contrib.distributions.MultivariateNormalDiag
,我会收到相同的错误消息。如果scale_diag
而非loc
是正在优化的变量,则不会收到错误。
答案 0 :(得分:0)
我仍在调查为什么会失败,但对于短期解决方案,是否会进行以下更改?
xLogProbs = xDist.log_prob(X, name='xLogProbs')
loss = -tf.reduce_mean(xLogProbs, name='loss')
注意:这实际上比tf.log(xProbs)
更可取,因为它在数值上从不那么精确 - 有时甚至更精确。 (所有tf.Distributions都是如此。)