我正在尝试做什么:从一个数据框中取出列,使用ifelse语句重新编码它们,然后将它们移动到一个新的数据框,一直使用dplyr和管道一次性完成。
问题:代码只对一列有效,但是当R遇到同一行代码中的多个列时,我遇到了问题。第二列无法识别,R抛出错误。我收到以下错误:
mutate_impl(.data,dots)中的错误: 评估错误:找不到对象'var2_orig'。
对此为何的任何想法?如果不使用ifelse语句,可能还有一种更简单的方法。我也对这方面的建议持开放态度,但我仍然对如何使用ifelse以及为什么错误包含多个列感到好奇。非常感谢。
示例代码:
library(tidyverse)
# creating fake data set
df_orig <- data_frame(var1_orig = sample(1:3, 50, replace = T),
var2_orig = sample(-2:2, 50, replace = T))
# works for one var (recoding 3's as NA, 2's as 1, and 1's as 0):
df_new <- df_orig %>%
as_tibble() %>%
transmute(var1_new = ifelse(var1_orig == 3, NA, ifelse(var1_orig ==
2, 1, ifelse(var1_orig == 1, 0, var1_orig))))
# and works the other var (recoding negatives as NA, 1's and 2's as 1, and
leaving 0's as 0's):
df_new <- df_orig %>%
as_tibble() %>%
transmute(var2_new = ifelse(var2_orig < 0, NA, ifelse(var2_orig ==
1 | var2_orig == 2, 1, 0)))
# but not together in same line of code (error: var2_orig not recognized):
df_new <- df_orig %>%
as_tibble() %>%
transmute(var1_new = ifelse(var1_orig == 3, NA, ifelse(var1_orig ==
2, 1, ifelse(var1_orig == 1, 0, var1_orig)))) %>%
transmute(var2_new = ifelse(var2_orig < 0, NA, ifelse(var2_orig ==
1 | var2_orig == 2, 1, 0)))
答案 0 :(得分:4)
dplyr的动词transmute
仅保留您创建的变量,并删除原始的varabiles,因此var2_orig
不再存在transmute
。
您可以在同一个transmute
调用中创建两个变量,使用mutate
,然后在不需要时删除原始变量。
顺便说一下,case_when
在这里很有用:
df_orig %>%
transmute(var1_new = case_when(var1_orig == 3 ~ NA_integer_,
var1_orig == 2 ~ 1L,
TRUE ~ var1_orig),
var2_new = case_when(var2_orig < 0 ~ NA_integer_,
var2_orig %in% 1:2 ~ 1L,
TRUE ~ 0L)
)
#> # A tibble: 50 x 2
#> var1_new var2_new
#> <int> <int>
#> 1 1 1
#> 2 1 1
#> 3 1 0
#> 4 NA NA
#> 5 NA 0
#> 6 1 NA
#> 7 1 1
#> 8 1 1
#> 9 1 1
#> 10 1 1
#> # ... with 40 more rows
答案 1 :(得分:3)
Transmute会丢弃变量,因此会出错。您可以使用mutate
更新现有变量,然后使用rename_all
(如果需要)更改其名称,
df_orig %>%
as_tibble() %>%
mutate(var1_orig = ifelse(var1_orig == 3, NA, ifelse(var1_orig == 2, 1,
ifelse(var1_orig == 1, 0, var1_orig))),
var2_orig = ifelse(var2_orig < 0, NA, ifelse(var2_orig == 1 | var2_orig == 2, 1, 0))) %>%
rename_all(funs(sub('_.*', '_new', .)))