我正在使用Kafka来实现基于事件采购的架构。
假设我以JSON格式存储事件:
{"name": "ProductAdded", "productId":"1", quantity=3, dateAdded="2017-04-04" }
我想实现一个查询,以获取某个日期的productId = X的产品数量。
你能用Spring Kafka KStreams显示这个查询的近似实现吗?
UPDATE:我使用Spring Kafka KStreams进行了一些改进,但是我收到了反序列化错误。
这是我的 Spring Cloud Stream Kafka Producer :
public interface ProductProducer{
final String OUTPUT = "productsOut";
@Output(ProductProducer.OUTPUT)
MessageChannel output();
}
配置:
spring:
application:
name: product-generator-service
cloud:
stream:
kafka:
binder:
brokers:
- kafka
zk-nodes:
- kafka
bindings:
productsOut:
producer:
sync: true
bindings:
productsOut:
destination: orders
content-type: application/json
我使用以下代码发送消息,将Map正确地序列化为JSON对象:
Map<String, Object> event = new HashMap<>();
event.put("name", "ProductCreated");
event.put("productId", product.getId());
event.put("quantity", product.getQuantity());
event.put("dateAdded", new Date());
productProducer.output().send(MessageBuilder.withPayload(event).build(), 500);
MessageBuilder.withPayload(event).build()
- &gt; GenericMessage [payload={quantity=1, productId=1, name=ProductCreated, dateAdded="xxxxx"}, headers={id=fc531176-e3e9-61b8-40e3-08074fabee4d, timestamp=1499845483095}]
在 ProductService应用程序中,我可以使用 Spring Cloud Stream监听器阅读此消息:
@Component
public class ProductListener{
@StreamListener(ProductConsumer.INPUT)
public void handleProduct(Map<String, Object> event){
然而,对于 KStream ,我收到反序列化错误:
@Configuration
public class KStreamsConfig {
private static final String STREAMING_TOPIC1 = "orders";
@Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public StreamsConfig kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "product-service-kstream");
props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
//props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.serdeFrom(jsonSerializer, jsonDeserializer).getClass().getName());
props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG, WallclockTimestampExtractor.class.getName());
return new StreamsConfig(props);
}
@Bean
public FactoryBean<KStreamBuilder> myKStreamBuilder(StreamsConfig streamsConfig) {
return new KStreamBuilderFactoryBean(streamsConfig);
}
@Bean
public KStream<?, ?> kStream(KStreamBuilder kStreamBuilder) {
Serde<Integer> integerSerde = Serdes.Integer();
final Serializer<JsonNode> jsonSerializer = new JsonSerializer();
final Deserializer<JsonNode> jsonDeserializer = new JsonDeserializer();
final Serde<JsonNode> jsonSerde = Serdes.serdeFrom(jsonSerializer, jsonDeserializer);
KStream<Integer, JsonNode> stream = kStreamBuilder.stream(null, integerSerde, jsonSerde, STREAMING_TOPIC1);
stream.print();
return stream;
}
}
异常:
org.apache.kafka.common.errors.SerializationException: com.fasterxml.jackson.core.JsonParseException: Unrecognized token 'ÿ': was expecting ('true', 'false' or 'null')
at [Source: [B@288e4e9a; line: 1, column: 4]
Caused by: com.fasterxml.jackson.core.JsonParseException: Unrecognized token 'ÿ': was expecting ('true', 'false' or 'null')
at [Source: [B@288e4e9a; line: 1, column: 4]
at com.fasterxml.jackson.core.JsonParser._constructError(JsonParser.java:1702)
at com.fasterxml.jackson.core.base.ParserMinimalBase._reportError(ParserMinimalBase.java:558)
at com.fasterxml.jackson.core.json.UTF8StreamJsonParser._reportInvalidToken(UTF8StreamJsonParser.java:3528)
at com.fasterxml.jackson.core.json.UTF8StreamJsonParser._handleUnexpectedValue(UTF8StreamJsonParser.java:2686)
at com.fasterxml.jackson.core.json.UTF8StreamJsonParser._nextTokenNotInObject(UTF8StreamJsonParser.java:878)
at com.fasterxml.jackson.core.json.UTF8StreamJsonParser.nextToken(UTF8StreamJsonParser.java:772)
at com.fasterxml.jackson.databind.ObjectMapper._initForReading(ObjectMapper.java:3834)
at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3783)
at com.fasterxml.jackson.databind.ObjectMapper.readTree(ObjectMapper.java:2404)
at org.apache.kafka.connect.json.JsonDeserializer.deserialize(JsonDeserializer.java:50)
at org.apache.kafka.connect.json.JsonDeserializer.deserialize(JsonDeserializer.java:30)
at org.apache.kafka.streams.processor.internals.SourceNode.deserializeValue(SourceNode.java:46)
at org.apache.kafka.streams.processor.internals.SourceNodeRecordDeserializer.deserialize(SourceNodeRecordDeserializer.java:44)
at org.apache.kafka.streams.processor.internals.RecordQueue.addRawRecords(RecordQueue.java:85)
at org.apache.kafka.streams.processor.internals.PartitionGroup.addRawRecords(PartitionGroup.java:117)
at org.apache.kafka.streams.processor.internals.StreamTask.addRecords(StreamTask.java:158)
at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:605)
at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:361)
更新2:
为了找出KStream的内容,我将密钥和值更改为字符串反序列化器,这就是正在打印的内容:
KStream<Integer, String> stream = kStreamBuilder.stream(null, integerSerde, stringSerde, STREAMING_TOPIC1);
印刷值:
[KSTREAM-SOURCE-0000000000]: null , �contentType
为什么我没有收到JSON字符串?
更新3: 我修复了反序列化问题,原因是消息生成器(Spring Cloud Stream)默认添加了一些头文件作为有效负载的一部分。我只需要禁用此标头包含以开始在Kafka Streams中正确接收消息:
spring:
application:
name: product-service
cloud:
stream:
kafka:
binder:
brokers:
- kafka
zk-nodes:
- kafka
bindings:
productsOut:
producer:
sync: true
bindings:
productsIn:
group: product-service
destination: orders
consumer:
max-attempts: 5
header-mode: raw
productsOut:
destination: orders
content-type: application/json
producer:
header-mode: raw
KStream定义:
KStream<Integer, JsonNode> stream = kStreamBuilder.stream(integerSerde, jsonSerde, STREAMING_TOPIC1);
输出:
[KSTREAM-SOURCE-0000000000]: null , {"quantity":0,"productId":0,"name":"ProductCreated","dateAdded":1499930385450}
现在所有设置都正确:如何实现我需要的交互式查询? - &GT; 在特定日期获取productId = X的产品数量
答案 0 :(得分:3)
我设法使用Spring Cloud Streams(生成消息)和Spring Kafka来处理KafkaStream并实现交互式查询(重要:注意问题更新3:到能够结合两者):
Kafka Streams配置:
@Configuration
public class KStreamsConfig {
private static final String STREAMING_TOPIC1 = "orders";
@Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public StreamsConfig kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "product-service-streams");
props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG, Serdes.Integer().getClass().getName());
props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.Integer().getClass().getName());
//props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.serdeFrom(jsonSerializer, jsonDeserializer).getClass().getName());
props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG, WallclockTimestampExtractor.class.getName());
return new StreamsConfig(props);
}
@Bean
public KStreamBuilderFactoryBean myKStreamBuilder(StreamsConfig streamsConfig) {
return new KStreamBuilderFactoryBean(streamsConfig);
}
@Bean
public KStream<?, ?> kStream(KStreamBuilder kStreamBuilder, KStreamBuilderFactoryBean kStreamBuilderFactoryBean) {
Serde<Integer> integerSerde = Serdes.Integer();
final Serializer<JsonNode> jsonSerializer = new JsonSerializer();
final Deserializer<JsonNode> jsonDeserializer = new JsonDeserializer();
final Serde<JsonNode> jsonSerde = Serdes.serdeFrom(jsonSerializer, jsonDeserializer);
KStream<Integer, JsonNode> stream = kStreamBuilder.stream(integerSerde, jsonSerde, STREAMING_TOPIC1);
stream.map( (key, value) -> {
return new KeyValue<>(value.get("productId").asInt(), value.get("quantity").asInt());
}).groupByKey().reduce( (v1, v2) -> v1 + v2, "ProductsStock");
stream.print();
return stream;
}
}
请注意我如何生成一个KTable商店ProductsStock
,稍后我会在服务中查询。
<强> ProductService 强>:
@Autowired
private KStreamBuilderFactoryBean kStreamBuilderFactoryBean;
@Override
public Integer getProductStock(Integer id) {
KafkaStreams streams = kStreamBuilderFactoryBean.getKafkaStreams();
ReadOnlyKeyValueStore<Integer, Integer> keyValueStore =
streams.store("ProductsStock", QueryableStoreTypes.keyValueStore());
return keyValueStore.get(id);
}
答案 1 :(得分:0)
即将发布的春季云流kafka binder 1.3.0.M1版本将支持kstream绑定。 有一个PR,您可以在其中跟踪此计划的进度。
以下是使用KStream活页夹的更一般示例(WordCount):WordCount Sample using Spring Cloud Stream support for Kafka Streams
有了这个,你就可以实现你想要的 通过以下方式。
此StreamListener方法将从Kafka主题进行侦听,并在最近30秒的时间窗口中使用ID等于123的产品的计数写入另一个主题。
@SpringBootApplication
@EnableBinding(KStreamProcessor.class)
public class ProductCountApplication {
public static final int = 123;
@StreamListener("input")
@SendTo("output")
public KStream<?, String> process(KStream<?, Product> input) {
return input
.filter((key, product) -> product.getID() == PRODUCT_ID)
.map((k,v) -> new KeyValue<>(v, v))
.groupByKey(new JsonSerde<>(Product.class), new JsonSerde<>(Product.class))
.count(TimeWindows.of(30000), "product-store")
.toStream()
.map((w,c) -> new KeyValue<>(null, "Product with id 123 count: " + c));
}
}
这是使用的application.yml:
spring.cloud.stream.kstream.binder.streamConfiguration:
key.serde: org.apache.kafka.common.serialization.Serdes$StringSerde # Use a native Kafka Serde for the key
value.serde: org.apache.kafka.common.serialization.Serdes$StringSerde # Use a native Kafka Serde for the value
spring.cloud.stream.bindings.output.producer:
headerMode: raw # Incoming data has no embedded headers
useNativeEncoding: true # Write data using the native Serde
spring.cloud.stream.bindings.input.consumer:
headerMode: raw # Outbound data has no embedded headers
运行程序时,需要传入输入/输出目的地(主题):
--spring.cloud.stream.bindings.input.destination=products
--spring.cloud.stream.bindings.output.destination=counts