我有一个包含某些属性的数据框,它具有下一个外观:
+-------+-------+
| Atr1 | Atr2 |
+-------+-------+
| 3,06 | 4,08 |
| 3,03 | 4,08 |
| 3,06 | 4,08 |
| 3,06 | 4,08 |
| 3,06 | 4,08 |
| ... | ... |
+-------+-------+
如您所见,数据框的Atr1和Atr2的值是具有“,”字符的数字。这是因为我从CSV中加载了这些数据,其中DoubleType数字的小数由','表示。
当我将数据加载到数据框中时,值被强制转换为String,因此我将这些属性的String从String应用到DoubleType:
df = df.withColumn("Atr1", df["Atr1"].cast(DoubleType()))
df = df.withColumn("Atr2", df["Atr2"].cast(DoubleType()))
但是当我这样做时,值会转换为null
+-------+-------+
| Atr1 | Atr2 |
+-------+-------+
| null | null |
| null | null |
| null | null |
| null | null |
| null | null |
| ... | ... |
+-------+-------+
我猜原因是DoubleType小数必须用'。'分隔。而不是','。但我没有机会编辑CSV文件,所以我想用'。'替换Dataframe中的','符号。然后将转换应用于DoubleType。
我怎么能这样做?
答案 0 :(得分:5)
您可以使用用户定义的函数简单地解决此问题。
class MyClass{
public:
enum M1 {
MY_VAL1 = 0,
MY_VAL2,
MY_VAL3
};
enum M2 {
MY_VA1 = 0,
MY_VA2,
MY_VA3
};
enum M3 {
MY_V1 = 0,
MY_V2,
MY_V3
};
M1 obj1;
M2 obj2;
M3 obj3;
};
static const MyClass foo = { MyClass::MY_VAL1, MyClass::MY_VA1, MyClass::MY_V1 };
编辑: 根据意见建议,更紧凑的解决方案。
from pyspark.sql.functions import UserDefinedFunction
from pyspark.sql.functions import *
data = [Row(Atr1="3,06", Atr2="4,08"),
Row(Atr1="3,06", Atr2="4,08"),
Row(Atr1="3,06", Atr2="4,08")]
df = sqlContext.createDataFrame(data)
# Create an user defined function to replace ',' for '.'
udf = UserDefinedFunction(lambda x: x.replace(",","."), StringType())
out = df
.withColumn("Atr1", udf(col("Atr1")).cast(DoubleType()))
.withColumn("Atr2", udf(col("Atr2")).cast(DoubleType()))
##############################################################
out.show()
+----+----+
|Atr1|Atr2|
+----+----+
|3.06|4.08|
|3.06|4.08|
|3.06|4.08|
+----+----+
##############################################################
out.printSchema()
root
|-- Atr1: double (nullable = true)
|-- Atr2: double (nullable = true)
答案 1 :(得分:1)
我们假设你有:
sdf.show()
+-------+-------+
| Atr1| Atr2|
+-------+-------+
| 3,06 | 4,08 |
| 3,03 | 4,08 |
| 3,06 | 4,08 |
| 3,06 | 4,08 |
| 3,06 | 4,08 |
+-------+-------+
然后,以下代码将产生所需的结果:
strToDouble = udf(lambda x: float(x.replace(",",".")), DoubleType())
sdf = sdf.withColumn("Atr1", strToDouble(sdf['Atr1']))
sdf = sdf.withColumn("Atr2", strToDouble(sdf['Atr2']))
sdf.show()
+----+----+
|Atr1|Atr2|
+----+----+
|3.06|4.08|
|3.03|4.08|
|3.06|4.08|
|3.06|4.08|
|3.06|4.08|
+----+----+
答案 2 :(得分:0)
您也可以只使用SQL。
val df = sc.parallelize(Array(
("3,06", "4,08"),
("3,06", "4,08"),
("3,06", "4,08"),
("3,06", "4,08"),
("3,06", "4,08"),
("3,06", "4,08"),
("3,06", "4,08"),
("3,06", "4,08")
)).toDF("a", "b")
df.registerTempTable("test")
val doubleDF = sqlContext.sql("select cast(trim(regexp_replace( a , ',' , '.')) as double) as a from test ")
doubleDF.show
+----+
| a|
+----+
|3.06|
|3.06|
|3.06|
|3.06|
|3.06|
|3.06|
|3.06|
|3.06|
+----+
doubleDF.printSchema
root
|-- a: double (nullable = true)
答案 3 :(得分:0)
是否可以将列名作为参数传递给示例代码中的col()函数? 像这样:
# Create an user defined function to replace ',' for '.'
udf = UserDefinedFunction(lambda x: x.replace(",","."), StringType())
col_name1 = "Atr1"
col_name2 = "Atr2"
out = df
.withColumn(col_name1, udf(col(col_name1)).cast(DoubleType()))
.withColumn(col_name2, udf(col(col_name2)).cast(DoubleType()))