中国的斯坦福CoreNLP包是否能够检测成语和成语(格言/谚语/惯用语(例如冰冻三尺,非一日之寒))?
答案 0 :(得分:0)
也很好!它真的很棒!
以下是由Stanford-NLP管道(中国模型)生成的:tokenize,ssplit,pos,lemma,ner
[
[
{
"category2":null,
"offset-begin":"0",
"ner2":"O",
"lemma2":"冰冻三尺",
"word2":null,
"index":"1",
"index2":"1",
"lemma":"冰冻三尺",
"offset-begin2":"null",
"tag2":"",
"originalText":"",
"offset-end":"4",
"answer":null,
"pos":"VV",
"offset-end2":"null",
"ner":"O",
"tag":"VV",
"originalText2":null,
"category":null,
"word":"冰冻三尺",
"value":"冰冻三尺"
},
{
"category2":null,
"offset-begin":"4",
"ner2":"O",
"lemma2":",",
"word2":null,
"index":"2",
"index2":"2",
"lemma":",",
"offset-begin2":"null",
"tag2":"",
"originalText":"",
"offset-end":"5",
"answer":null,
"pos":"PU",
"offset-end2":"null",
"ner":"O",
"tag":"PU",
"originalText2":null,
"category":null,
"word":",",
"value":","
},
{
"category2":null,
"offset-begin":"5",
"ner2":"O",
"lemma2":"非一日之寒",
"word2":null,
"index":"3",
"index2":"3",
"lemma":"非一日之寒",
"offset-begin2":"null",
"tag2":"",
"originalText":"",
"offset-end":"10",
"answer":null,
"pos":"VV",
"offset-end2":"null",
"ner":"O",
"tag":"VV",
"originalText2":null,
"category":null,
"word":"非一日之寒",
"value":"非一日之寒"
}
]
]