我希望创建一个特定用途的旋转表,这是最初的代码:
#define TWIDDLE_LIMIT 64
#define PI 3.1415927
float *twiddle_real;
float *twiddle_imag;
void main()
{
int N = 256;
int TW_size = TWIDDLE_LIMIT + (TWIDDLE_LIMIT>>2);
twiddle_real = malloc(TW_size * sizeof(float));
twiddle_imag = malloc(TW_size * sizeof(float));
int i;
for(i=0; i<TWIDDLE_LIMIT; i++)
{
twiddle_real[i] = (float) cos((float)i * 2.0 * PI / (float)N);
twiddle_imag[i] = (float) - sin((float)i * 2.0 * PI / (float)N);
}
for(int a=0; a<TWIDDLE_LIMIT; a++)
printf("RE = %f \t IM = %f \n",twiddle_real[a],twiddle_imag[a]);
}
我得到了这样的结果:
RE = 1.000000 IM = -0.000000 //64 lines
RE = 0.999699 IM = -0.024541
RE = 0.998795 IM = -0.049068
RE = 0.997290 IM = -0.073565
RE = 0.995185 IM = -0.098017
RE = 0.992480 IM = -0.122411
RE = 0.989177 IM = -0.146730
RE = 0.985278 IM = -0.170962
RE = 0.980785 IM = -0.195090
RE = 0.975702 IM = -0.219101
RE = 0.970031 IM = -0.242980
RE = 0.963776 IM = -0.266713
RE = 0.956940 IM = -0.290285
RE = 0.949528 IM = -0.313682
RE = 0.941544 IM = -0.336890
RE = 0.932993 IM = -0.359895
RE = 0.923880 IM = -0.382683
RE = 0.914210 IM = -0.405241
RE = 0.903989 IM = -0.427555
RE = 0.893224 IM = -0.449611
RE = 0.881921 IM = -0.471397
RE = 0.870087 IM = -0.492898
RE = 0.857729 IM = -0.514103
RE = 0.844854 IM = -0.534998
RE = 0.831470 IM = -0.555570
RE = 0.817585 IM = -0.575808
RE = 0.803208 IM = -0.595699
RE = 0.788346 IM = -0.615232
RE = 0.773010 IM = -0.634393
RE = 0.757209 IM = -0.653173
RE = 0.740951 IM = -0.671559
RE = 0.724247 IM = -0.689541
RE = 0.707107 IM = -0.707107
RE = 0.689541 IM = -0.724247
RE = 0.671559 IM = -0.740951
RE = 0.653173 IM = -0.757209
RE = 0.634393 IM = -0.773010
RE = 0.615232 IM = -0.788346
RE = 0.595699 IM = -0.803208
RE = 0.575808 IM = -0.817585
RE = 0.555570 IM = -0.831470
RE = 0.534998 IM = -0.844854
RE = 0.514103 IM = -0.857729
RE = 0.492898 IM = -0.870087
RE = 0.471397 IM = -0.881921
RE = 0.449611 IM = -0.893224
RE = 0.427555 IM = -0.903989
RE = 0.405241 IM = -0.914210
RE = 0.382683 IM = -0.923880
RE = 0.359895 IM = -0.932993
RE = 0.336890 IM = -0.941544
RE = 0.313682 IM = -0.949528
RE = 0.290285 IM = -0.956940
RE = 0.266713 IM = -0.963776
RE = 0.242980 IM = -0.970031
RE = 0.219101 IM = -0.975702
RE = 0.195090 IM = -0.980785
RE = 0.170962 IM = -0.985278
RE = 0.146730 IM = -0.989177
RE = 0.122411 IM = -0.992480
RE = 0.098017 IM = -0.995185
RE = 0.073565 IM = -0.997290
RE = 0.049068 IM = -0.998795
RE = 0.024541 IM = -0.999699
这只是一个极小的问题,我可以尽可能多地解释你。
我想要并尝试创建的是一个以较早的行开头的表格,resdt将如下所示:
(早期行)表示如下(idx:0 ---&gt; 64)
re[idx] = (float) cos((float)i * (2*pi)/(float)N);
im[idx] = (float)-sin((float)i * (2*pi)/(float)N);
(第2组线)表示如下重复4次
re[idx] = (float) cos(4 * (float)i * (2*pi)/(float)N);
im[idx] = (float)-sin(4 * (float)i * (2*pi)/(float)N);
(第3组线)表示如下重复16次
re[idx] = (float) cos(16 * (float)i * (2*pi)/(float)N);
im[idx] = (float)-sin(16 * (float)i * (2*pi)/(float)N);
结果预计如下:
//set 1 as above repeated just 1 time
// ....
//set 2 repeated 4 times
RE = 1.000000 IM = -0.000000 //1st ligne of set 1
RE = 0.995185 IM = -0.098017 //4th ligne of set 1
RE = 0.980785 IM = -0.195090 //8th ligne of set 1
RE = 0.956940 IM = -0.290285 //12th ligne of set 1 ...
RE = 0.923880 IM = -0.382683
RE = 0.881921 IM = -0.471397
RE = 0.831470 IM = -0.555570
RE = 0.773010 IM = -0.634393
RE = 0.707107 IM = -0.707107
RE = 0.634393 IM = -0.773010
RE = 0.555570 IM = -0.831470
RE = 0.471397 IM = -0.881921
RE = 0.382683 IM = -0.923880
RE = 0.290285 IM = -0.956940
RE = 0.195090 IM = -0.980785
RE = 0.098017 IM = -0.995185
// set 3 repeated 16 times
RE = 1.000000 IM = -0.000000 //1st ligne of set 1
RE = 0.923880 IM = -0.382683 //16th ligne of set 1
RE = 0.707107 IM = -0.707107 //38th ligne of set 1
RE = 0.382683 IM = -0.923880 //64th ligne of set 1
我已经尝试了几次,但我一直得到错误的结果,我不知道这是否是精确问题还是其他问题。
答案 0 :(得分:1)
您可以在附加(外部)循环中维护因子和设置大小:
// you will need more than you calculated previously!
float twiddle_real[TWIDDLE_LIMIT * 3];
float twiddle_imag[TWIDDLE_LIMIT * 3];
// pointer arithmetic...
float* real = twiddle_real;
float* imag = twiddle_imag;
double factor = 1.0;
for(int size = TWIDDLE_LIMIT; size > 1; size /= 4)
{
for(int j = 0; j < 64; ++j)
{
*real++ = (float) cos((j % size) * factor * 2.0 * PI / N);
*imag++ = (float) -sin((j % size) * factor * 2.0 * PI / N);
}
factor *= 4.0;
}
顺便说一句,你不需要所有这些演员阵容 - 因为因素是双倍的,(j % size)
会被隐式转换为N
。
建议:由于re和img属于一起,我会代表他们:
struct Complex
{
double re;
double im;
};
然后你可以有一个这样的数组:
struct Complex twiddle[TW_size]; // no need for malloc, by the way...
您可能已经注意到:我也改为加倍。没有理由使用float(精度更有限),除非你的内存有限(微控制器)......
替代方案(为什么重新发明轮子?):使用complex.h
。
答案 1 :(得分:0)
它不起作用,因为你的数学错了。第一个表仅涵盖复平面的第一个象限。当你将所需输出的第二段乘以4时,你将不会得到第一象限的4次重复,你将得到所有四个象限。
这与您指定的内容更接近。它解决了使用C的一些问题:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N_ROOTS_OF_UNITY 64
#define PI 3.14159265358979323846264338327950
float *twiddle_real;
float *twiddle_imag;
int main()
{
size_t table_size = N_ROOTS_OF_UNITY * 3;
twiddle_real = malloc(table_size * sizeof(float));
twiddle_imag = malloc(table_size * sizeof(float));
size_t i, incr, repeat, k = 0;
for (incr = 1; incr <= 16; incr *= 4) {
for (repeat = 0; repeat < incr; ++repeat) {
for(i = 0; i < N_ROOTS_OF_UNITY; i += incr) {
twiddle_real[k] = (float) cos(i * (PI / 2) / N_ROOTS_OF_UNITY);
twiddle_imag[k] = (float) -sin(i * (PI / 2) / N_ROOTS_OF_UNITY);
++k;
}
}
}
for (int a = 0; a < table_size; a++)
printf("%d: RE = %f\tIM = %f\n", a, twiddle_real[a], twiddle_imag[a]);
return 0;
}