我正在使用分类数据在Spark DataFrame上进行数据准备。我需要对分类数据进行One-Hot-Encoding,我在spark 1.6
上尝试了这个sqlContext = SQLContext(sc)
df = sqlContext.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
], ["id", "category"])
stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)
encoder = OneHotEncoder(dropLast=False, inputCol="categoryIndex", outputCol="categoryVec")
encoded = encoder.transform(indexed)
encoded.select("id", "categoryVec").show()
这段代码产生了这种格式的单热编码数据。
+---+-------------+
| id| categoryVec|
+---+-------------+
| 0|(3,[0],[1.0])|
| 1|(3,[2],[1.0])|
| 2|(3,[1],[1.0])|
| 3|(3,[0],[1.0])|
| 4|(3,[0],[1.0])|
| 5|(3,[1],[1.0])|
+---+-------------+
通常,我对One-Hot编码技术的期望是每个类别的每列和0,1个相应的值。如何从中获取这类数据?