我始终确信没有必要拥有比CPU核心更多的线程/进程(从性能角度来看)。但是,我的python示例显示了不同的结果。
import concurrent.futures
import random
import time
def doSomething(task_num):
print("executing...", task_num)
time.sleep(1) # simulate heavy operation that takes ~ 1 second
return random.randint(1, 10) * random.randint(1, 500) # real operation, used random to avoid caches and so on...
def main():
# This part is not taken in consideration because I don't want to
# measure the worker creation time
executor = concurrent.futures.ProcessPoolExecutor(max_workers=60)
start_time = time.time()
for i in range(1, 100): # execute 100 tasks
executor.map(doSomething, [i, ])
executor.shutdown(wait=True)
print("--- %s seconds ---" % (time.time() - start_time))
if __name__ == '__main__':
main()
计划结果:
1 WORKER --- 100.28233647346497秒---
2工人--- 50.26122164726257秒---
3工人--- 33.32741022109985秒---
4工人--- 25.399883031845093秒---
5工人--- 20.434186220169067秒---
10名工人--- 10.903695344924927秒---
50工人--- 6.363946914672852秒---
60工人--- 4.819359302520752秒---
只需4个逻辑处理器,如何才能更快地工作?
这是我的电脑规格(在Windows 8和Ubuntu 14上测试):
CPU Intel(R)Core(TM)i5-3210M CPU @ 2.50GHz 插座:1 核心:2 逻辑处理器:4
答案 0 :(得分:5)
原因是因为sleep()
仅使用可忽略不计的CPU量。在这种情况下,它是对线程执行的实际工作的不良模拟。
所有sleep()
确实会挂起线程,直到计时器到期为止。线程暂停时,它不使用任何CPU周期。
答案 1 :(得分:2)
我用更密集的计算(例如矩阵求逆)扩展了你的例子。您将看到您的预期:计算时间将减少到核心数量并随后增加(因为上下文切换的成本)。
import concurrent.futures
import random
import time
import numpy as np
import matplotlib.pyplot as plt
def doSomething(task_num):
print("executing...", task_num)
for i in range(100000):
A = np.random.normal(0,1,(1000,1000))
B = np.inv(A)
return random.randint(1, 10) * random.randint(1, 500) # real operation, used random to avoid caches and so on...
def measureTime(nWorkers: int):
executor = concurrent.futures.ProcessPoolExecutor(max_workers=nWorkers)
start_time = time.time()
for i in range(1, 40): # execute 100 tasks
executor.map(doSomething, [i, ])
executor.shutdown(wait=True)
return (time.time() - start_time)
def main():
# This part is not taken in consideration because I don't want to
# measure the worker creation time
maxWorkers = 20
dT = np.zeros(maxWorkers)
for i in range(maxWorkers):
dT[i] = measureTime(i+1)
print("--- %s seconds ---" % dT[i])
plt.plot(np.linspace(1,maxWorkers, maxWorkers), dT)
plt.show()
if __name__ == '__main__':
main()